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ABSTRACT 

Breast cancer is the second-most common cancer and the second-leading cause of cancer-

related deaths in women. Despite advances in cancer early detection, prevention and 

treatment, breast cancer is still a major health challenge due to low survival caused by 

breast cancer metastasis. This warrants critical attention and intervention. From the 

proteomic standpoint, a protein-based multiplex system that provides large array of 

informative signals for cancer identification and prognosis is still limited. In this 

dissertation work, we developed two mass spectrometry-based strategies involving 

chemical biology tools for rapid protein fingerprinting of breast cancer cell lines, and for 

probing the O-linked N-acetylglucosamine (O-GlcNAc) proteome in transforming growth 

factor-beta (TGF-) induced epithelial-mesenchymal transition (EMT), a process that 

initiates metastasis. Investigation of O-GlcNAc EMT proteomics is critical in 

understanding how aberrant O-GlcNAc post-translational modification (PTM) promotes 

cancer invasion and metastasis, as well as in the identification of early stage therapeutic 

targets. Until now the role of O-GlcNAc PTM in TGF--induced EMT is unknown.  

 In Chapter 2, a novel ‘one-step cell processing’ method was developed as a 

prerequisite to rapid spectral profiling of mammalian cells using Matrix-Assisted Laser 

Desorption Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS). Upon 

analysis of the mass spectral data of breast cancer cell lines with pattern recognition 

methods, discrimination between metastatic and non-metastatic cell lines was 
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accomplished, demonstrating the potential of MALDI-MS profiling in breast cancer 

diagnosis.  

 Chapter 3 reports a cleavable azide-reactive dibenzocyclooctyne-disulphide 

agarose-based beaded resin in Copper-free Click chemistry-based affinity enrichment of 

O-GlcNAc proteome from azido-GlcNAc labeled cellular extracts, that enabled the 

global O-GlcNAc proteomic profiling by shortgun proteomics with liquid 

chromatography-tandem mass spectrometry identification and label-free quantification. 

From TGF--induced EMT in MNuMG cells 196 proteins were identified. 125 of these 

were putative O-GlcNAc proteins, 75% of which have been previously identified among 

O-GlcNAc affinity enrichment samples. Downstream bioinformatics analyses of the O-

GlcNAc proteome data were performed using Ingenuity Pathway Analysis (IPA) 

software. In silico protein-protein interactions revealed a regulatory network for 

metastasis, while the most significantly represented metabolic and signaling pathways 

included glycolysis and several TGF- non-canonical pathways, respectively. A 

metastatic regulatory network that features core regulators β-catenin and cyclin-D1 both 

of which are regulated by O-GlcNAc transferase supports published study that shows that 

“O-GlcNAcylation Plays Essential Role in Breast Cancer Metastasis,” has led us to 

hypothesize that TGF- signaling cooperates with O-GlcNAc signaling in promoting 

EMT, invasion and metastasis, pending O-GlcNAc site-mapping and validation of the 

proteomic data.
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CHAPTER 1 

LITERATURE REVIEW  

1.1 BACKGROUND 

1.1.1 Significance and Rationale 

Breast cancer is the second-most common cancer and the second leading cause of cancer-

related deaths in women, with over 200,000 new cases and over 40,000 deaths estimated 

in USA in 20151. The current USA SEER records show that survival from cancer has 

improved a great deal in the last 20 years due partly to advances in cancer prevention, 

early detection and treatment1. However, the 5-year relative survival during 2005-2011 

was still remarkably low for metastatic (25%) breast tumors and high for localized (98%) 

and regional (84%) tumors2. This difference could be attributed to the fact that primary 

tumors can be controlled by early detection and adjuvant treatment while control of 

metastatic tumors, as accomplished by chemotherapy, is associated with complications3. 

These alarming records suggest that breast cancer is not only a public health problem, but 

that breast cancer metastasis is the prominent cause of breast cancer mortality and thus 

necessitates critical attention and intervention4. 

 Breast cancer arises primarily from genetic alterations in the epithelium of the 

mammary gland ducts and lobules.5 Breast cancer lesions in these glandular regions may 

start as benign and progress through in situ and invasive and ultimately become 

metastatic if not diagnosed accurately and treated efficiently3, 6-7 (Figure 1.1). Breast 

cancer metastasis is a multi-step process4. It begins with switching of epithelial cells of 
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Figure 1.1 Illustration of different stages of progression of breast cancers of epithelial 

origin, showing that primary tumor cells acquire invasive behavior and become migratory 

through EMT. If cancer is not detected and treated effectively the migratory cells invade 

the surrounding stroma and gain access to the blood vessels by intravasation, and 

eventually get spread to secondary sites through metastasis. This schematic was adopted 

from a review of J. P. Thiery6. The breast anatomy was adopted from the webpage of C. 

Nordqvist8. 
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the primary tumors to migratory and invasive forms that are able to invade the local 

tumor stroma and the lymphatic system. These motile cancer cells then enter the blood 

and get transported to distant sites where they switch back to epithelial and undergo 

survival and proliferation6. Gene expression profiling studies have shown that the 

metastatic potential of cancer is revealed very early at clonal stage, and that the 

expression signature for metastatic recurrence resembles that of epithelial-mesenchymal 

transition (EMT).9 This suggests that early diagnosis is invaluable and that deciphering of 

EMT signatures could lead to discovery of efficient drug targets for breast cancer. 

1.1.2 Breast Cancer and Molecular Profiling 

Breast cancer is a collection of distinct neoplastic diseases that are complex and diverse 

in their pathological, clinical and molecular features10. The heterogeneous behavior of 

breast cancer has been characterized through molecular profiling using complementary 

DNA microarrays.11 On the basis of patterns of gene expression and chromosomal 

aberrations, breast cancer has been classified into five molecularly and clinically distinct 

subtypes12. These are luminal A, luminal B, HER2-overexpressing, basal-like and normal 

breast tissue-like. Luminal A and B tumors are estrogen receptor-positive (ER+) and are 

associated with good prognosis. HER2-overexpressing and basal-like tumors have worst 

clinical outcome. HER2-overexpressing tumors are ER+ while basal-like ones are 

negative to ER, PR and HER213. The gene expression pattern defining each subtype is the 

same for the in situ carcinoma and its concomitant invasive form while the 

aggressiveness due to chromosomal alterations changes with disease progression towards 

metastatic14-15. These insights about breast cancer have been unraveled through molecular 

profiling, an approach that has revolutionized the understanding of tumor biology11. 
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 Molecular profiling involves high-throughput analysis of gene expression and 

chromosomal aberrations on a global scale. It produces massive high dimensional data 

that requires further analysis by multivariate statistics and advanced computational 

methods16. Compared to the routine histological and immunological techniques that 

measure few variables known apriori, molecular profiling analyzes many previously 

unknown variables17, thus it can reveal new information about breast cancer18. Through 

molecular profiling, combinations of gene alterations in the form of gene signatures with 

specificity regarding diagnosis, prognosis and prediction to therapeutic response have 

been deduced.19 Some representative examples include MammaPrint prognostic test 

(70-gene signature),20-21 CINSARC prognostic signature for sarcomas (67-gene 

signature), Oncotype DX prognostic kit (16-gene signature),22 and Baylor College 92-

gene signature predictive of response to Docetaxel in breast cancer. Among them, 

MammaPrint and Oncotype DX are the only ones that have been clinically validated.  

 Several benefits of the gene signatures that include the understanding of tumor 

biology and pathology, subtyping of cancer and development of clinical diagnostic, 

prognostic, and predictive tests have been recognized.11 Of importance is the fact that 

while the propensity for metastasis and its recurrence could be predetermined and 

progressively acquired, respectively23, as well as assessed using genetic tests, the 

therapeutic response is the result of interaction of cancer cells with the stroma and other 

underlying tissues, and would be best predicted using functional analyses24-25. Therefore, 

with the intent to develop molecular personalized treatments, proteins rather than DNA or 

RNA are the suitable targets for therapeutic response17. Proteomic profiling of breast 

cancer cells using high-throughput MS technologies is expected to reveal protein level 
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expression of different genes, from which proteomic signatures and disease biomarkers 

can be deduced. Specifically, proteomic profiling of EMT, a process that resembles 

metastatic recurrence by gene expression9, could impact early diagnosis strategies and 

development of efficient therapeutic targets for metastatic breast cancer.  

1.2 EMT AND CANCER 

EMT is a developmental process in which epithelial cells are transformed biochemically 

and phenotypically to a migratory form that detaches from the basement membrane26. 

EMT plays a role in cellular changes occurring in embryogenesis, tissue fibrosis and 

tumorigenesis27. One the one hand EMT contributes to tissue development, wound 

healing and homeostasis26, while on the under hand, under certain conditions it promotes 

malignancy6. In cancer, specifically, EMT is responsible for dissociation and migration of 

tumor cells from primary tumors, and invasion of surrounding tissues leading to 

metastasis27. EMT is highly regulated transcriptionally, post-transcriptionally, 

translationally, and post-translationally28. The transcriptional program that drives EMT 

involves activities of several transcription factors of different families29. Evidence of 

regulation by PTMs other than phosphorylation, such as O-GlcNAc that has bearing on 

physiological conditions of the cell, is still emerging30. During EMT, a distinct set of 

genes is upregulated or down-regulated and the corresponding gene products (RNA, 

Protein) may serve as EMT markers or be included in typical EMT signatures31. 

Investigation of potential cancer-related EMT protein markers and signatures are the 

focus of this thesis. 
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 Several studies and reviews have described what happens to cells during EMT. 

Briefly, cells disassemble the epithelial intercellular junctions (Figure 1.1) and repress 

expression of junctional proteins. Concomitantly, cells upregulate expression of 

mesenchymal proteins and ECM metalloproteases, which promote cell invasion. 

Predominantly, loss of transmembrane adherence protein of epithelial cells, E-cadherin, 

that is often detected during cancer progression, is a characteristic feature of EMT29. This 

feature is also a marker for tumor cell invasion6. In addition, the genetic switch from 

epithelial to mesenchymal is accompanied by transformation in cellular morphology and 

reorganization of the actin cytoskeleton. Specifically, the actin protein changes 

structurally from cortical architecture to stress fibers associated with focal adhesion 

complex resulting in enhanced ability to migrate32. In some tumors, EMT provides cancer 

cells with the ability to dissociate, degrade the ECM, traverse the basal membrane and 

invade the surrounding stroma33. Clinically the EMT molecular hallmarks that include 

downregulation of E-cadherin, upregulation of mesenchymal genes and remodeling of 

extra-cellular matrix are thought to contribute to poor prognosis in many cancers 

including breast cancers29. 

 A holistic view about EMT is that it involves a co-operation between changes in 

the cell shape, adherence and migration, resistance to apoptosis-inducing stimuli and 

metabolic pathways34. These processes are regulated via signaling pathways that might 

have common stimuli or characterized by crosstalk resulting in expression of 

characteristic sets of genes31. Thus, systems-based approaches are considered suitable in 

understanding molecular dynamics within EMT29. A typical genome-wide gene 

expression approach such as a proteomic study would identify and quantify proteins 
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associated with these changes35. It is envisaged that precise knowledge of such changes in 

cancer cells, as revealed by probing the proteome, may lead to characterization of new 

candidate biomarkers and therapeutic targets34. 

 Various researchers have demonstrated that gene ontology and protein-protein 

interaction networks enable classification and visualization of distinct features of EMT 

from mass spectrometry-identified proteins34, 36-37. Biarc and coworkers observed protein 

level structural features of EMT in the form of differentially expressed functional groups 

of proteins, where each functional group was referred to as ‘EMT signature’ because of 

similarity of expression from two signals, mutant K-Rasv12, and TGF- both of which 

induced EMT in the same cell line34. The functional classes of proteins differentially 

expressed included ECM proteins, cell adhesion and intercellular junctional proteins, 

cytoskeletal proteins, degradation, translation and metabolic machineries. Similarly, 

Vergara and co-authors, obtained EMT-associated proteins from proteomic analyses of 

non-mesenchymal and mesenchymal breast cancer cellular models37. Protein-protein 

interaction networks revealed signaling pathways that regulate EMT including MAPK, 

STAT, Src, NF-κB and RhoA. Interestingly, several studies as reviewed elsewhere4, 38, 

have shown that TGF- can trigger many of these pathways that regulate EMT, hence our 

interest in investigating its possible cooperation with protein O-GlcNAc PTM as 

influenced by cellular metabolic changes.  

1.3 EMT AND TGF- 

TGF- signaling pathway that is triggered by TGF- is recognized as the classical and 

key contributor to cancer progression6, 39. TGF- is a prototype of a large family of 



www.manaraa.com

8 

growth and differentiation cytokines, the TGF- superfamily, whose members regulate a 

wide variety of cellular processes in different tissue and cell types40-41. TGF- itself 

participates in major cellular processes such as proliferation, differentiation, migration 

and apoptosis42. As a potent inducer of EMT, TGF- occurs in high levels in many kinds 

of tumors and its levels are often correlated to high invasion and onset of metastasis43. Of 

importance, also is the fact that TGF- signaling has antagonistic effects between early 

and late tumor stages. Both effects have been demonstrated in vitro in mammary 

epithelial cellular models and many cancer cell lines44, and confirmed through in vivo 

studies, involving TGF- treatment. In early stages of cancer, TGF- acts as a tumor 

suppressor by inhibiting cell proliferation and inducing apoptosis, whereas in later stages 

of cancer, it promotes tumorigenesis by stimulating EMT, angiogenesis, immune 

response escape, stemness, invasion and metastasis45. 

 TGF-/Smad signaling has been well studied and widely reviewed43, 46-49. Briefly, 

TGF- initiates its signals of multifunctional effects by binding to type II serine-

threonine kinase receptor (TRII), thus causing a heteromeric complex formation of this 

receptor with type I kinase receptor (TRI), resulting in trans-phosphorylation and 

activation of both receptors (Figure 1.2). From TRI, different signaling cascades will be 

initiated depending on whether serine-threonine kinase or tyrosine kinase of the receptor 

is activated. In canonical TGF- signaling, represented on Figure 1.2, the activated kinase 

activity of TRI propagates the signal by phosphorylating serine-threonine residues of 

the Receptor-regulated Smads (R-Smads), Smad2 and Smad3. The activated R-Smads 

form heteromeric complex with Smad4 (Co-Smad), leading to translocation of the Smad  
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Figure 1.2 Schematic of the canonical TGF-/Smad signaling showing that the effect of 

TGF-, if any, on the O-GlcNAc modification is unknown. The illustration was adopted 

from a review of C. Heldin et al.57  
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complex into the nucleus where the Smad proteins modulate the transcription of TGF- 

target genes, mainly those encoding Snail proteins and other EMT transcriptional 

regulators. In Smad signaling, these EMT regulators aid the heteromeric Smad complex 

in DNA promoter recognition and binding. 

 In non-canonical TGF- signaling, TGF- activates various non-Smad signaling 

effectors that produce responses that support EMT program50. These include Ras-Erk 

MAP kinase pathway, that mediates growth stimulation; p38 MAP kinase pathway, that 

promotes apoptosis; JNK MAP kinase pathway, that modulates phosphorylation of 

Smad3 thus enhancing Smad signaling50; mTOR kinase pathway that promotes increase 

in cell size and protein synthesis thus supporting cell motility and invasion51; PI3K/Akt 

pathway that sequesters Smad3 thus inhibiting antiproliferative effect of Smad352; RhoA 

pathway that mediates disassembly of tight junctions53; Integrin-Paxillin, that promotes 

focal adhesion formation as adherence junctions disassemble54. In addition, TGF- 

signaling can activate other signaling pathways such as Ras and Notch signaling 

pathways55. Notch cooperates with hypoxia to regulate Snail transcription factors and 

support tumorigenic EMT56. 

 Mechanistically, TGF- activates complex transcriptional networks to establish 

EMT57. The components of the heteromeric Smad complex have low affinity for DNA 

and therefore, require interaction with and co-activation by transcriptional co-factors58, 

some of which are regulated by O-GlcNAcylation, the PTM under investigation in this 

thesis work. The sequential co-activation of the heteromeric co-Smad complex and its 

transcriptional effects has been extensively reviewed. However, hardly any reviews show 
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the detailed regulation of this co-activation by PTMs such as O-GlcNAcylation in the 

EMT literature. Park et al. have demonstrated how the O-GlcNAc modification of Snail1 

regulates its transcriptional activities and its phosphorylation59. Certainly, though Snail1 

is one of the major regulators of EMT, it is not the only O-GlcNAc regulated 

transcriptional co-factor of the heteromeric co-Smad complex. The extent of O-

GlcNAcylation of the heteromeric co-Smad complex transcriptional co-factors and 

various TGF- signaling molecules, as well as interplay between the O-GlcNAc and 

phosphorylation modifications in this context, have to be explored in order to understand 

how aberrant metabolic changes influence EMT, and possibly to demonstrate if inhibition 

of such metabolic changes can inhibit EMT, invasion and metastatic spread34. 

1.4 N-ACETYLGLUCOSAMINE POSTTRANSLATIONAL MODIFICATION (PTM) 

Research on O-GlcNAcylation in breast cancer has gained interest since the discovery 

about five years ago that global GlcNAcylation levels are associated with breast cancer 

formation and metastasis60. Unlike the classical N-linked and O-linked glycosylation, O-

GlcNAcylation is a PTM in which a monosaccharide N-acetylglucosamine (GlcNAc) is 

attached in -O-linkage to Serine and Threonine hydroxyl groups of nucleocytoplasmic 

proteins61-62. It has no consensus motif and it is abundant and reversible and occurs in 

multicellular eukaryotes63. It is similar to phosphorylation but different from the 

traditional N-, and O-linked glycosylation64-65. Both phosphorylation and O-

GlcNAcylation are dynamic in their response to biological stimulus and widespread 

among regulatory and signaling proteins66. Different functional classes of proteins 

including transcriptional and translational machinery, degradation proteins, cytoskeletal 

and signaling proteins are modified and regulated by phosphorylation and O-
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GlcNAcylation67-69. Both PTMs modify same proteins and compete for the same Serine 

and Threonine sites of proteins, where their effect is reciprocal and is characterized by a 

‘yin-yang’ relationship70-71. Each PTM has two recycling enzymes, one that attaches the 

modification (i.e. kinase and OGT), and the other that removes the modification (i.e. 

phosphatase and O-GlcNAcase)72-73. These enzymes and their target proteins are in close 

proximity since they are colocalized thus allowing for dynamic effect to take place63. 

However, the enzymes responsible for N-, and O-linked glycosylation are located in 

different cellular compartments (Golgi and ER versus lumen of exocytic and endocytic 

organelles), thus making dynamic response unlikely63. 

 Despite its resemblance of phosphorylation, O-GlcNAcylation is distinct in that it 

is directly associated with the nutritional and energy status of the cell74. It is considered a 

nutrient sensor because of its responsiveness to the nutrient state of the cell that is 

coupled with modulation of function of target proteins making them respond 

appropriately to extracellular stimuli75. From the external sources including glucose and 

glucosamine, O-GlcNAc is made available for post-translational modification through the 

hexosamine biosynthetic pathway (HBP)76 (Figure 1.3). This pathway is linked to 

glycolysis during the rate-limiting step in which Fructose-6-phosphate is converted in the 

presence of glutamine to Glucosamine-6-phosphate by GFAT77. HBP ultimately produces 

UDP-GlcNAc, the substrate for modification of serine and threonine residues of proteins 

by OGT enzyme. Aside from glycolysis, several other metabolic pathways are linked to 

HBP, hence UDP-GlcNAc is synthesized from several metabolites including glutamine, 

acetyl-coenzyme A, uridine and ATP78-79.
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Figure 1.3 Schematic illustration of the hexosamine biosynthetic pathway showing flow 

of metabolites from other pathways especially glycolysis and the salvage pathways. The 

scheme was adopted from the review of L. Wells and G. W. Hart 76, and C. Slawson et 

al.82
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 There are many ways in which glucose uptake and flux through glycolysis are 

altered to modulate HBP80. Several signals including those induced by cellular stress, 

insulin and many cytokines increase glucose uptake through upregulation of glucose 

transporters81. These signals tend to be disease-specific and some are triggered in 

response to environmental glucose concentration. In hyperglycaemic conditions, for 

instance, high extracellular glucose levels alter cellular function through upregulation of 

the HBP leading to elevated levels of UDP-GlcNAc that promote insulin resistance, a 

hallmark of type II diabetes77. In cancer, increased glucose flux through HBP is 

influenced by abnormal regulation of glycolysis, owing to high energy demands of cancer 

cells, regardless of hyperglycaemic conditions82. With regards to TGF- signaling, high 

glucose was found to induce endogenous TGF-1 production mediated by HBP in murine 

mesangial cells83. The autocrine TGF- stimulation resulted in upregulation of ECM 

proteins and reduced proliferation. These observations imply that glycolysis-influenced 

glucose flux characteristic to cancer might enhance TGF--induced EMT. However, the 

influence of TGF- on glycolysis and HBP to modulate O-GlcNAcylation is not known. 

1.5 O-GLCNACYLATION AND METABOLISM IN BREAST CANCER 

1.5.1 “Warburg Effect”  

Metabolic dysfunction in cancer was first described by O. Warburg in 195684. Now 

known as “Warburg effect”, this metabolic shift involves increase in glycolysis under 

conditions of high oxygen tension, resulting in enhanced lactate production, as well as 

increase in glucose uptake and use of the elevated amounts of glucose as a carbon source 

for biosynthesis85-86. It is known that 2-5% of glucose entering the cell is used to produce 



www.manaraa.com

15 

UDP-GlcNAc through Hexose Biosynthetic Pathway87. Elevated levels of UDP-GlcNAc 

increase the activity of OGT since it is tightly dependent on the concentration of the 

substrate UDP-GlcNAc in the cell88. Thus, enhanced glucose uptake and metabolism 

result in elevated intracellular (global) O-GlcNAcylation and subsequent modulation of 

target proteins to the advantage and support of the cancer phenotypes89. O-GlcNAc levels 

are increased in many tumor types89. 

 O-GlcNAcylation has a role in many biological processes under normal and 

diseased states, where in the latter, its effects may be due to faulty metabolic regulation 

that contributes to disease pathology60. For instance, in cancer, several tumor-associated 

proteins, mostly transcription factors, have been identified as O-GlcNAcylated proteins59, 

69, 90. The effects of O-GlcNAcylation on the function of only a few of these proteins, as 

well as the roles of their O-GlcNAcylation in cancer progression, have been 

investigated59. Snail1, a mediator of TGF- signaling and EMT transcriptional inducer, is 

one such protein. The co-regulation of Snail1 through O-GlcNAcylation and TGF- 

signaling during cancer progression has not been made clear. 

1.5.2 O-GlcNAcylation and Invasion and Metastasis 

TGF-- induced EMT is crucial in breast cancer metastasis since many of the breast 

carcinomas are of epithelial origin91. It has been established that since loss of E-cadherin 

is associated with poor clinical outcome92, the molecule that causes this loss becomes a 

marker of malignancy, and a good target for anti-invasive cancer therapy93. Therefore, it 

is important to establish E-cadherin repressors during tumor progression. To this end, the 

mechanism by which O-GlcNAcylation leads to cancer invasion and metastasis is still not 
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clearly understood60, as illustrated in Fig. 1.4. Suppression of E-cadherin was found to be 

one way in which the effects of O-GlcNAcylation in breast cancer are mediated60. 

Coincidentally, down-regulation of E-cadherin is known to be the key mechanism and 

hallmark of EMT, a process that initiates invasion and metastasis6. Therefore, it is 

surprising that in investigating the mechanism of how O-GlcNAcylation contributes to 

cancer invasion, an upstream process such as EMT nor the signal transduction pathways 

associated with it, have not been considered60. Nonetheless, down-regulation of E-

cadherin due to O-GlcNAcylation suggests a crosstalk between O-GlcNAcylation and 

signaling pathways leading to EMT, invasion and metastasis, in which, proteins that 

regulate and mediate EMT, invasion and metastasis are, in turn regulated by O-

GlcNAcylation. In the context of TGF--induced EMT in breast cancer, Snail1 is the 

only regulatory O-GlcNAcylated protein that has been characterized59. The O-

GlcNAcylation of E-cadherin binding partners, p120 and -catenin in breast cancer 

suggests that there might be other proteins relevant to breast cancer whose regulation by 

O-GlcNAcylation is still unknown. Similar to Snail1, these proteins could be targets for 

therapeutic interventions during TGF--mediated EMT, invasion and metastasis. Detailed 

knowledge of the critical roles played by O-GlcNAcylation and other modifications on 

the function of such proteins is therefore essential. 

1.5.3 O-GlcNAcylation and TGF- Signaling 

O-GlcNAcylation is known as a link between nutrient sensing and signaling94. Although 

this fact is well established in insulin signaling77, few studies provide evidence for the 

linking role of O-GlcNAcylation in TGF- signaling. Figure 1.4 illustrates the roles that 
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Figure 1.4 Illustration of the relationship between O-GlcNAcylation and TGF- 

signaling, constructed from connections made from findings and reviews of Y. Gu et 

al.60, S. Y. Park et al.59, and S. Hardiville and G. W. Hart94. 
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glucose and its metabolic sensor (HBP) play in TGF- signaling. On the one hand, 

glucose induces phosphorylation of Smad3, and activates Akt-TOR signaling thus 

causing increase in protein synthesis and cellular hypertrophy95. Previously, glucose had 

been shown to stimulate autocrine activation of TGF- in murine mesangial cells, which 

in turn induces collagen gene expression and protein synthesis83, 96. On the other hand, 

upregulation of Snail1 by O-GlcNAcylation due to high glucose flux through HBP leads 

to tumorigenic EMT, invasion and metastasis59. Although O-GlcNAcylation is not 

implicated in the phosphorylation of Smad3, both effects contribute to cancer 

malignancy.  

 Taken together, the previous studies show that TGF- signaling is a well-studied 

signal transduction pathway whose role in cancer progression is known but whose 

contribution to metabolic dysfunction with regards to Warburg effect of carcinogenesis is 

not clear. Therefore study of dynamic regulation of cellular metabolic pathways by TGF-

 is critical. Neither the investigation of O-GlcNAcylation of E-cadherin and its binding 

partners, p120 and Catenin, nor O-GlcNAcylation of Snail1 alone is sufficient to 

demonstrate how TGF- causes metabolic shift and promotes malignancy. Perhaps a 

combination of quantitative proteomics and metabolic analysis as reported in Shaw et al. 

is a suitable approach97. In this thesis, we intend to use mass spectrometry to explore the 

O-GlcNAc proteome during TGF--induced EMT, as this proteome can reveal the 

relationship between O-GlcNAcylation and TGF- signaling. 
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1.6 MS-BASED PROTEOMICS 

1.6.1 Background 

The field of proteomics is a collection of various technical disciplines that deal with 

large-scale determination of gene and cellular functions directly at the protein level98. A 

proteomic approach may take any one of these two routes: 1) MS-based identification of 

proteins isolated from cells or tissues, and 2) activity-based biochemical and genomic 

analyses that may involve cell imaging, array and chip experiments, and genetic 

readouts98-99. In the post-genomic era, rapid identification of proteins using mass 

spectrometry is a common proteomic practice100. However, in the traditional sense, this 

approach is inadequate for functional proteomics investigations and requires 

improvements to be suitable for site-specific mapping of post-translational modifications 

and protein-protein interactions25. Recent advancements in MS-based techniques for 

protein identification and PTM site-mapping have accelerated functional proteomics and 

methodologies are evolving to address inherent challenges posed by the nature of the 

biological sample101.  

 Due to a large dynamic range of proteins in complex biological samples, there is a 

bias toward detecting high abundance proteins63. As a result, proteins with low copy 

number, many of which are regulatory and post-translationally modified have low 

sequence coverage and are unlikely to be detectable102. In addition to being low 

abundance proteins, the low stoichiometry of the PTMs and their lability during collision-

induced dissociation (CID) make it more challenging to analyze PTMs103. Hence the 

traditional analytical proteomic approach involving separation of proteins using 2D-
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PAGE prior to LC-MS/MS is replaced or augmented by affinity enrichment approaches 

that selectively isolate sub-population of peptides and proteins bearing the O-GlcNAc 

PTM, prior to LC-MS/MS63. By complementing sample pre-fractionation, these 

approaches not only effectively reduce sample complexity but also increase proteome 

coverage and may be amenable to PTM site mapping.  

1.6.2 Affinity Enrichment Approaches for O-GlcNAc PTM 

Affinity tags coupled to solid supports such as agarose constitute popular affinity 

enrichment strategies for O-GlcNAc-modified peptides and proteins63, 104. Since the 

discovery of O-GlcNAc PTM about 30 years ago61, different methodologies involving 

covalent and non-covalent attachment to affinity probes have been employed and widely 

reviewed105. These include the non-covalent anti-O-GlcNAc antibody-, and lectin-based 

strategies, as well as the highly specific chemoenzymatic-, and click-chemistry-based 

methodologies. The chemoenzymatic-based method originally involved labeling GlcNAc 

sites of proteins with [3H]galactose from UDP-[3H]galactose, with the catalytic action of 

-1,4-galactosyltransferase61-62, and subsequent detection of the radiolabeled amino acid 

using Edman sequencing106. Khidekel et al. eliminated the use of radiolabeling and 

modified this method to incorporate keto-galactose using a suitable recombinant -1,4-

galactosyltransferase, followed by biotinylation at its keto moiety, avidin affinity 

chromatography and subsequent protein identification by LC-MS/MS107. Wang et al. 

improved the strategy by using a novel photocleavable biotin probe that improved the 

analytical capability of chemoenzymatic labeling103. This strategy was even further 

improved by using Click chemistry-based photocleavable biotin probe as described in 

Alfaro et al108.  



www.manaraa.com

21 

 Prior to the method modification championed by Khidekel and co-workers, O-

GlcNAc sites on only 80 mammalian proteins had been reported109. Using 

chemoenzymatic labeling and Orbitrap LC-MS/MS Khidekel et al. then contributed 

additional 30 proteins110. Although their strategy revolutionized the affinity enrichment 

of O-GlcNAc proteins, the analytical performance had low throughput. Due to this 

limitation, the improved methodology applied in Alfaro et al.108 is the one considered 

instead among the highly promising strategies for O-GlcNAc affinity enrichment111. 

Alfaro and coworkers performed chemoenzymatic labeling of the O-GlcNAc proteome 

from brain tissue using GalNAz, followed by biotinylation using PC-PEG-biotin-alkyne, 

and enrichment using avidin affinity chromatograpy. In that study the largest number of 

O-GlcNAc sites, 458 from 195 proteins was reported. On the non-covalent front, lectin 

weak affinity chromatography strategy as developed by Vosseller et al.112, and applied 

later in Trinidad et al.113 and Myers et al.114 is also “high-throughput” proteome-wide, 

since the latter yielded 142 O-GlcNAc sites from 62 proteins111. Nonetheless, use of 

Click chemistry-based strategies involving cleavable reagent as demonstrated in Alfaro et 

al. and Wang Z. et al. have opened a door to diversity of countless possibilities for 

exploiting the CuAAC and SPAAC for affinity enrichment of O-GlcNAc proteins. 

Although the CuAAC-based approaches are common, the reagents of the CuAAC 

reaction are viewed as toxic and destructive to peptides and to components of the biotin-

avidin system115. Therefore development of SPAAC approaches that exclude biotin-

avidin system is necessary. 

 In the past few years there has been a growing interest in the application of Click 

chemistry involving [3 + 2] azide-alkyne cycloaddition for probing chemically modified 
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proteins bearing bioorthogonal chemical tags. More than a decade ago Bertozzi and co-

workers established that incorporation of unnatural metabolite provides opportunities for 

protein modification and selective labeling of proteins116. In particular these authors 

showed that labeling glycoproteins with a unique chemical tag permits their selective 

modification from complex mixtures. Such chemical tags eventually facilitate 

identification of glycoproteins by proteomic strategies. Various strategies previously 

employed in tagging O-GlcNAc modified proteins to form a handle for Click chemistry-

based affinity enrichment are shown in Table 1.2. In general, the enrichment route begins 

by attaching the chemical handle to O-GlcNAc proteins through chemoenzymatic or 

metabolic labeling, followed by conjugation of the functionalized proteins to the 

enrichment probe that may be biotin-, or non-biotin-based. Subsequently the affinity-

enriched proteins are released from the probe and analyzed by LC-MS/MS. 

 The common practice in click chemistry-based strategies involving metabolic 

labeling has been described in the studies of Bertozzi and coworkers117. Treatment of 

cells with either N-azidoacetylglucosamine, N-azidogalactosamine or N-

alkynylglucosamine results in the metabolic incorporation of the azido sugar into nuclear 

and cytoplasmic proteins in place of O-GlcNAc. Briefly, the exogenously added 

AC4GlcNAz, AC4GalNAz or AC4GlcNAlk will diffuse into the cells and be deacetylated 

by action of intracellular esterases. The deacetylated Azido sugar will then enter the 

salvage pathway of the hexosamine biosynthesis where UDP-GlcNAz, a donor substrate 

for O-GlcNAcylation of nucleocytoplasmic proteins, is produced. The azido-tagged post-  
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Table 1.2 Click chemistry-based O-GlcNAc affinity enrichment strategies 

O-GlcNAc 

Labeling 

Conjugation to 

Probe 

Biotin or none Affinity 

Enrichment 

Downstream 

Analysis 

Results References 

Chemoenzymatic CuAAC Biotin-based GalNAz labeling + 

Biotin-PEG-PC-

Alkyne + 

Biotin/Avidin 

LC-

CID/HCD/ETD-

MS/MS 

458 O-GlcNAc 

sites on 195 

proteins 

Alfaro et al. 

2012108 

   GalNAz labeling + 

Biotin-alkyne + 

Biotin/Avidin 

LC-CID-MS/MS 213 Putative (67 

previously 

reported) 

Clark et al. 

2008118 

  No biotin GalNaz labeling + 

Phospho-alkyne + 

Phospho/TiO2 

LC-HCD/ETD-

MS/MS 

42 O-GlcNAc 

peptides (7 novel 

O-GlcNAc sites) 

Parker et al. 

2011119 

Metabolic  Staudinger ligation Biotin-based GlcNAz labeling 

+Biotin-phosphine 

+ Biotin/Avidin 

LC-CID-MS/MS 10 O-GlcNAc + 

41 Putative 

Sprung et al. 

2005120 
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Table 1.1 (Contd.) 

 

     199 Putative (23 

validated) 

Nandi et al. 

2006121 

 CuAAC Biotin-based GlcNAz labeling 

+Biotin-alkyne + 

Biotin/Avidin 

LC-CID-MS/MS 32 Putative (14 

previously 

unreported) 

Gurcel et al. 

2008122 

   GlcNAlk labeling 

+ Azido-azo-biotin 

+ Biotin/Avidin 

LC-CID-MS/MS 374 Putative (279 

previously 

unreported) 

Zaro et al. 2011123 

     431 Putative (115 

previously 

unreported) 

Gurel and Zaro et 

al. 2014124 

  No biotin GlcNAz labeling + 

resin-alkyne 

BEMAD + LC-

CID/HCD-MS/MS 

1500 O-GlcNAc 

proteins + 185 O-

GlcNAc sites on 

80 proteins 

Hahne et al. 

2013111 
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translationally modified O-GlcNAc proteins can be covalently derivatized with 

biochemical probes that may be biotin-based, in which case the resin should also be 

derivatized with the corresponding affinity material, avidin; or alkyne. These affinity 

probes are suitable for peptides only, proteins only or both. Below is a synopsis of 

selected downstream MS analytical strategies that will be used for proteomic profiling of 

breast tumor cells and mammary epithelial tumor model cells.  

1.7 MS INSTRUMENTATION FOR PROTEOMIC PROFILING 

1.7.1 Background 

Mass spectrometry (MS) has become a suitable tool for rapid analysis of proteins sourced 

from complex biological mixtures99. As a discipline within the multifaceted field of 

proteomics, MS-based proteomics is the current indispensable technology for giving 

information about the primary structure of a protein, its post-translational modifications 

and its interactions with other proteins125. Most importantly, MS-based proteomics is 

capable of solving biological and clinical questions as it can allow: generation of protein-

protein interaction maps; gene ontology annotations based on the protein identification 

technology; and analysis of protein expression profiles as a function of cellular state thus 

making inference of cellular function possible126. The key role of MS-based proteomics 

in cancer research is characterization of proteins through identification, quantification, 

and functional assignment, thus, contributing to the understanding of molecular events 

involved in cancer progression25. It has been recognized that the proteomic information 

will improve cancer diagnosis, prognosis, prevention and treatment through development 

of cancer biomarkers and targeted therapies127. In this thesis work MS-based proteomics 
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technology will be applied in protein profiling of breast cancer cell lines as well EMT 

breast tumor model cells to test the efficiency of novel sample preparation strategies in 

revealing distinguishing features that reflect breast cancer biomarkers and O-GlcNAc 

EMT signatures as well as unknown protein functions. Two approaches of protein 

profiling, namely; intact cell MALDI-TOF-MS profiling and O-GlcNAc proteomic 

profiling will be undertaken. To understand these proteomic approaches, the capabilities 

of the two MS instruments of interest, namely; MALDI-TOF-MS and LC-MS/MS (LTQ 

orbitrap) have been briefly reviewed. 

 A mass spectrometer is an instrument that determines the mass of molecules by 

measuring their mass-to-charge ratio (m/z) and generates a mass spectrum128. It consists 

of three main parts, namely; 1) ion source, where analyte molecules are ionized in 

gaseous form, 2) mass analyzer, that measures the mass-to-charge (m/z) ratio of the ions, 

and 3) a detector, that records the number of ions at m/z and gives out a signal98. 

Although a mass spectrometer was invented in the 19th century, analysis of biomolecules 

was only made possible following the discovery of “soft” ionization techniques, MALDI 

and ESI, in the late 20th century129-130. These ionization techniques result in minimal 

fragmentation of the analyte. MALDI sublimates, in a vacuum, the mixture of matrix and 

sample and uses laser pulses to ionize the analyte out of this dry, crystalline mixture of 

matrix and sample131. ESI ionizes the analyte coming out of sample solution and is 

therefore usually coupled to liquid chromatography132.  

 Mass measurement of analyte ions generated using either of these two processes 

would not be possible if it were not for the powerful mass analyzers coupled therewith 

that possess superior qualities required for good analytical performance. Such analytical 



www.manaraa.com

 

27 

performance parameters include sensitivity, resolution, mass accuracy and ability to 

generate information-rich MS/MS spectra from peptide fragments133. The four basic 

types of mass analyzers with stellar qualities for MS measurements are TOF, ion trap, 

quadrupole and Fourier-Transform cyclotron98. MALDI is usually coupled to TOF 

analyzer that measures the mass of intact peptides while ESI is often coupled to ion trap 

and triple quadrupole mass spectrometers in which fragment ion spectra of selected 

precursor ions are generated134. Modern mass spectrometers come with advanced 

technology that brings outstanding analytical performance owing to the contribution of 

parts that make up their hybrid mass analyzers135-138. Such improvement accounts for 

higher mass accuracy, higher detection capability and shorter cycling times that enable 

increased throughput and more reliable data139. A typical example of such instruments is 

the Linear Trap Quadrupole-Orbitrap ion trap velos mass spectrometer140 (Thermo Fisher 

Scientific, Germany) that has been employed in the proteomics studies in this thesis.  

1.7.2 The LTQ Orbitrap Mass Spectrometer 

In principle, LTQ Orbitrap mass spectrometer has five basic components, namely; an API 

ion source, in which the analyte is ionized under atmospheric pressure; LTQ mass 

analyzer, in which the masses of ions are analyzed using MS and MSn scan modes; a C-

trap, that allows accumulation and external storage of ions before they are pulsed into the 

Orbitrap. The components are shown on Figure 1.5. It is in the orbitrap that the ions 

assume circular trajectories around the center electrode and their axial oscillations along 

this electrode are detected. The Orbitrap uses the Fourier Transform function to detect 

ions hence it shares a similar feature with the high resolution FTICR mass 

spectrometer138. Invented by Makarov before commercialization in 2005, the Orbitrap is 
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Figure 1.5 Diagram showing the route of ions and signal in the LTQ Orbitrap MS, 

adopted from S. Eliuk and A. Marakarov102. The horizontal turquoise line represents the 

flow of ions. The converging red edges coming from the C-Trap represent the ion packet 

(pulse) injected into the orbitrap mass analyzer where advanced signal processing by 

Fourier Transform function takes place. 
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one of the newest mass analyzers with outstanding analytical features that include high 

mass resolution (up to 150 000), large space charge capacity, and high mass accuracy (2-

5 ppm)141-142. Collectively, the combination of the patented Orbitrap technology and the 

powerful Finnigan LTQ linear ion trap in an LTQ Orbitrap mass spectrometer provides 

faster, more sensitive and more reliable detection and identification platform for MS-

based proteomics102, 137. 

 Moreover, Orbitrap mass spectrometer is an instrument of choice for functional 

proteomics102. It allows fragmentation of peptides by different modes, collision-induced 

dissociation, electron transfer dissociation and high-energy C-trap dissociation102. The 

commonly used CID for conventional peptide sequence analysis causes neutral loss of 

GlcNAc as an oxonium ion prior to fragmentation of the peptide backbone. As a result, 

the peptide bearing the GlcNAc cannot be located143. Conversely, ETD causes 

fragmentation of the backbone with GlcNAc modification intact therefore it allows 

identification of that peptide and GlcNAc site mapping144-145. HCD also leaves the 

modified peptide intact146. Hence, as shown in Table 1.2, affinity enrichment strategies 

such as those of Alfaro et al.108 and Hahne et al.111 that were followed by MS analysis 

involving combinations of fragmentations resulted in reports of high number of O-

GlcNAc sites and proteins with valid O-GlcNAc. Derivatization of peptides using 

BEMAD improves site identification using CID125. For more confident O-GlcNAc site 

mapping a combination of ETD and HCD is recommended147.  
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1.7.3 The MALDI-TOF Mass Spectrometer 

MALDI-TOF mass spectrometer, in particular, is widely used for protein profiling and 

discovery of disease biomarkers from different biological samples148. As illustrated in 

Figure 1.6, it uses pulsed laser irradiation of a co-crystal of a UV-absorbing compound (a 

matrix) and the analyte to desorb and ionize the analyte molecules in a gaseous phase131. 

A spectrum is then recorded directly following the drift of ions in the flight-tube and their 

subsequent detection. Each mass spectrum is a graph of protein intensity against m/z and 

consists of a series of protein peaks. MALDI-TOF-MS has proven to be a suitable 

instrument for rapid profiling of different biological samples including intact cells151-156. 

It has been applied previously for rapid profiling of bacteria, fungi, and human clinical 

specimen such as serum and biopsies153, 157-159. It has been employed in this thesis for 

profiling of breast cancer cells involving novel sample preparation.  

1.8 SPECIFIC AIMS AND RESEARCH QUESTIONS 

In chapter 2 of this thesis we asked whether breast cancer cell lines could be rapidly 

profiled and distinguished based on their protein mass spectral differences. The specific 

aims were to 1) develop a novel sample preparation methodology for rapid MALDI MS 

profiling of mammalian cells; and 2) apply the established methodology to distinguish 

breast cancer cell lines of different metastatic potential. The novel sample preparation 

strategy involved “one-tube” pretreatment of cell pellet with a mixture of unique 

composition containing some known MALDI solvents and matrices, followed by 

instrumental analysis of the samples to generate their mass spectral profiles, as well as 

application of computational methods to reveal and visualize the differences.
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Figure 1.6 Schematic of the MALDI-TOF-MS analysis starting from 

desorption/ionization of the protein molecules through display of a spectrum and 

discrimination between normal and cancer samples using bioinformatics methods. This 

illustration was adopted from reports of C. Laronga and R. Drake149, as well as Y. Yasui 

et al.150



www.manaraa.com

 

32 

 In Chapter 3, we sought to develop a SPAAC-based affinity enrichment strategy 

and use it to obtain insights on O-GlcNAc proteome of TGF- induced EMT. We asked 

whether TGF-, in inducing EMT, modulates O-GlcNAc modification of 

nucleocytoplasmic proteins. Could there be a crosstalk between TGF- and O-GlcNAc 

signaling pathways during EMT? The specific aims were to 1) characterize the affinity 

enrichment dibenzocyclooctyne-disulphide-beaded resin probe; 2) metabolically label 

cellular proteins with GalNAz and enrich the labeled proteome through SPAAC using the 

resin; and 3) employ shotgun proteomics to identify and quantify the azido-labeled O-

GlcNAc-proteome of NMuMG cells undergoing EMT. The biochemical probe employed 

in this thesis is a unique “Click-able and cleavable” dibenzocyclooctyne-modified resin 

that serves as an affinity enrichment tool for the purpose of facilitating mass 

spectrometric identification of azido-labeled O-GlcNAc-modified proteins from TGF--

induced EMT.
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CHAPTER 2 

A COMPREHENSIVE AND INFORMATIVE METHODOLOGY FOR MALDI-TOF MS 

PROFILING AND DISCRIMINATION OF BREAST CANCER CELLS 

2.1 ABSTRACT 

Matrix-assisted Laser Desorption/Ionization time-of-flight mass spectrometry (MALDI-

TOF MS), the state-of-the-art high-throughput technology, has been employed in 

profiling of breast cancer cell lines leading to their discrimination based on mass spectral 

fingerprints. The reported novel sample preparation strategy for profiling of mammalian 

cells involves a one-step processing of whole cells to produce the sample from which 

protein mass spectra are generated. Spectra were acquired in the m/z range 3000-20000 

and consisted of the largest array of peaks ever to be reported in this range. Among the 

cell lines profiled, NIH3T3 (murine) cells were used for method development while the 

human breast cancer cell lines were used for method application. Analysis of the mass 

spectral data by pattern recognition and learning classification methods has enabled us to 

discriminate between the cancerous and non-cancerous cells lines, and between 

metastatic and non-metastatic cell lines. Specifically, results of unsupervised clustering 

show that the established MALDI-TOF MS strategy has the potential to discriminate 

breast cancer cell lines, and therefore could be an alternative to Surface Enhanced Laser 

Desorption Ionization (SELDI) TOF MS with ProteinChip. However, similar to SELDI 

approach, the discrimination by the MALDI fingerprints requires further fine-tuning 

using supervised classification. The reported results portray the one-step cell processing 
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method as an informative and simple way of profiling and classifying cells in a highly 

cost-effective and reproducible manner. The comprehensive methodology has a potential 

to expand the role of MALDI-TOF MS in several fields related to cell and tissue profiling 

for disease diagnosis and therapy.  

2.2 INTRODUCTION 

Breast cancer is the second leading cause of cancer-related mortality in women1-2. 

Although significant advances in early detection and treatment of breast cancer have been 

made, a protein-based multiplex system that provides large array of informative signals 

for cancer identification and prognosis is still limited3. As a step towards advancing the 

future tools in cancer diagnostics, we focused our multivariate analytical tool for human 

cell lines derived from breast cancers. These breast cancer cell lines represent some of the 

key molecular tumor subtypes and serve as representative models for studying breast 

cancers4-6. Profiling of such cells by the state-of-the-art high-throughput technologies 

such as MALDI-TOF MS can lead to the discovery of potential diagnostic and prognostic 

biomarkers of breast cancers7. 

 MALDI-MS is an analytical technique that uses laser irradiation of a matrix-

sample co-crystal to vaporize molecules for injection into a mass spectrometer to obtain 

information on molecular weight8. The distinctive advantages over other ionization 

techniques, such as electrospray ionization and atmospheric pressure chemical ionization, 

lie in the soft ionization nature by which singly-charged ions are produced without 

fragmentation of the fragile biomolecules (i.e. peptides, proteins, nucleic acids)9. In 

addition, MALDI is usually coupled with a time-of-flight (TOF) analyzer to provide, in 

theory, a potentially  unlimited measurement of masses of macromolecules10. These 
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features, among others, have made MALDI-MS a popular analytical tool for the rapid, 

sensitive and efficient detection of various analytes relevant to protein chemistry, 

biotechnology, and cell and molecular biology9, 11-12. 

MALDI-TOF MS protein profiling with or without protein identification has been 

employed in the field of proteomics in the identification of bacteria and fungi and in the 

discrimination of disease states of various cancers13-15. Although this mass spectrometric 

approach for dissecting organisms and diseases does not reveal the entire proteome, the 

mass spectra reflect a small but sufficient portion that can be used to characterize 

organisms and diseases9, 16. The spectral patterns generated provide large arrays of 

valuable information that permit classification at taxonomic and biological levels17. Such 

a remarkable revelation of biological information requires, prior to analysis, appropriate 

preparation of the sample18, a part of the MALDI-MS analytical technique that is often 

challenging due to the complexity of biological samples, such as cells19-20. 

There are thousands of different proteins in the cell co-existing with lipids, 

carbohydrates and nucleic acids, and the total amount of protein varies significantly with 

each cell type9. Moreover, some abundant proteins produce very strong ionization signals 

that suppress signals from less abundant proteins, hiding the signals that carry 

biologically important information21. Preparative methods, such as cell-sample 

pretreatment, matrix selection , matrix solution conditions and spotting technique, also 

affect the quality of the mass spectra18. Consequently, while in theory the MALDI-TOF 

MS based approach is appealing, in practice, the sample preparation and the complexity 

of the sample make the entire process quite arduous for obtaining informative and 

reproducible mass spectral patterns22. 
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Since Cain et al. began profiling bacteria  by MALDI-TOF MS and demonstrated 

the potential of MS-based profiling in 1994, several investigations on bacterial cell 

sample preparation, experimental factors involved and detection of high molecular 

weight proteins for the improvement of MALDI-MS profiles have been documented23. 

Vaidyanathan et al. investigated different sample preparation approaches to increase the 

detection range of proteins from whole bacterial cells using MALDI-MS24; Williams et 

al. explored the influence of experimental factors on mass spectra from whole-cell 

bacteria by MALDI-MS17; and Madonna et al. published a methodology to enhance the 

signal-to-base-line ratio of high molecular weight protein signals from bacteria by 

MALDI-MS25. In contrast to the bacterial cells, mammalian cells exhibit an even greater 

structural complexity, thereby making their analysis by mass spectrometry a more 

challenging effort9. The cell culture methods and heterogenous cell populations 

complicate the MALDI-MS profiling of mammalian cells, hence very few reports on 

MALDI-MS profiling of mammalian cells have been published9, 26-30. 

Herein, we report a comprehensive and informative methodology for the direct 

and rapid protein profiling of whole mammalian cells. Our protocol, depicted on Figure 

2.1, involves a simple and reproducible one-step sample processing for analyzing whole 

mammalian cells by MALDI-TOF MS to produce mass spectral fingerprints of each cell 

type, and a down-stream computational data analytic step for the discrimination of cell 

types. The key step in our sample preparation is carried out by just a one-step operation, 

rinsing of cells with a novel DHB- and Isopropanol-containing MALDI matrix solution A 

(Figure 2.1) to simultaneously lyse cells and extract proteins. No additional purification 

and fractionation of the cell sample are involved. Fewer sample preparation steps in 
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Figure 2.1 A Schematic workflow in MALDI-MS profiling and discrimination of cancer 

cells, featuring the novel one-step cell sample processing in sample preparation. 
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comparison with previously published methods minimize the risk of poor reproducibility 

thereby make the profiling methodology rapid and reliable9, 29-30. We firstly applied an in-

house data analytic pipeline, based on the preprocessing algorithms of the Bioinformatics 

Toolbox (Mathworks, Natick, MA), pattern recognition and learning classification 

algorithms, to analyze the complex mass spectral data. Secondly, we employed a 

commercial software to further explore patterns in the data. The results show that 

MALDI-TOF MS profiling can be employed in the discrimination of breast cancer cells 

in a rapid, high-throughput and reproducible manner. This comprehensive and 

informative methodology might be useful for the identification and analysis of cancerous, 

stem, and differentiating cells. 

2.3 EXPERIMENTAL SECTION 

2.3.1 Materials 

2,5-Dihydroxybenzoic acid (gentisic acid, DHB), 3,5-dimethoxy-4-hydroxycinnamic acid 

(Sinapinic acid, SA), α-cyano-4-hydroxycinnamic acid (CHCA) and ammonium 

hydrogencitrate (AHC) were purchased from Sigma-Aldrich, St. Louis, USA. 2’6’-

Dihydroxyacetophenone (DHAP) was purchased from Acros Organics, New Jersey, 

USA. Dulbecco’s modified phosphate-buffered saline (DPBS) and all cell culture 

reagents were purchased from Thermo Scientific Hyclone Laboratories, Inc., Utah, USA. 

Deionized water (dH2O) was produced from a Millipore Purification System (18 MΩ·cm 

at 25 ºC). MALDI matrix solution A (5 mg/mL DHB in [VC3H8O:VACN:VdH2O = 2:1:1]) 

was prepared by mixing equal volumes of isopropanol with that of 10 mg DHB/mL of 

acetonitrile and dH2O (1:1). MALDI matrix solution B is a DHAP matrix solution 

described by Wenzel et al.31. It was prepared by suspending 50 µmol DHAP in 375 µL 
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ethanol and 125 µL of 10 µmol ammonium hydrogencitrate (stock solution: 27 mg in 1.5 

mL dH2O), and vortexing for at least a minute to dissolve the DHAP. The composition of 

the SA matrix solution was 10 mg/mL SA in (VACN:VdH2O:VTFA = 10:10:1), while that of 

CHCA matrix solution was 10 mg/mL CHCA in (VACN:VdH2O:VTFA = 30:70:1). NIH-3T3 

cells  were provided by Dr. Kim E. Creek (Center for Colon Cancer Research, University 

of South Carolina). MCF-7 and MCF-10A cells were kind gifts from Dr. Hexin Chen 

(Center for Colon Cancer Research, University of South Carolina). MDA-MB231 

cellculture was obtained from the American Type Culture Collection (ATCC number 

HTB26, ATCC, Manassas, VA, USA). 

2.3.2 Cell Culture and Harvesting 

The two human breast cancer cell lines, MCF-7 and MDA-MB231, and the mouse 

embryonic fibroblast cell line, NIH-3T3 were maintained in high glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 4 mM L-glutamine, 1 mM sodium 

pyruvate, and supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), and 

10% foetal bovine serum (FBS) or 10% neonatal calf serum (NCS), respectively. The 

human breast immortalized normal cell line MCF-10A was cultured in DMEM:F12 

(50/50) medium containing similar supplements as the DMEM above in addition to 10 

µg/mL insulin, 20 ng/mL epidermal growth factor, 100 ng/mL cholera toxin and 0.5 

µg/mL hydrocortisone.  All cell cultures were maintained at 37 ºC and 5% CO2 in air in a 

humidified incubator. Cells were cultured in triplicates in T75 flasks for 2 days. At about 

80% confluence, cells in one of the flasks were trypsinized and passaged in a split ratio of 

1:3. Cells from the other two flasks were also trypsinized, transferred to 15 mL Falcon 

tubes and harvested by 5 min centrifugation in a Beckman Coulter Benchtop centrifuge at 
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100 × g at room temperature. After discarding the supernatant the harvested cells were 

resuspended in DPBS and transferred into pre-weighed sterile 1.5 mLeppendorf tubes, 

rinsed twice with DPBS and spinned in Eppendorf centrifuge at 500 × g for 5 min to 

pellet out the cells. 

2.3.3 Sample Preparation Featuring the ‘One-step Cell Processing’ 

A cell pellet of approximately  (2-5) x 106 cells in an eppendorf tube were pre-treated in 

‘one-step cell processing’ by mixing with 200 µL of MALDI matrix solution A. The 

mixture was stirred for 20~30 seconds using a tipped pipette and placed on ice for 

transfer to a cold centrifuge. Centrifugation was done in a Beckman Coulter Microfuge at 

14000 rpm at 4 ºC for 3 minutes. The supernatant was carefully removed and discarded 

and the wet cell pellet was weighed. For consistency, the pellet weight was employed, 

based on Equation 2.1 below, in the determination of the volume of dH2O required for 

resuspension of the pellet. The processed cell suspension sample was thoroughly stirred 

to ensure homogeneity and was maintained on ice for stability. After sample dilution with 

dH2O to 24 mg/µLfor NIH3T3 (and 190 mg/µL for breast cell lines), equal amounts of 

the sample, 2%TFA and MALDI matrix solution B were mixed together. Two 0.5 µL 

aliquots of this mixture were spotted onto a MALDI-MS target plate (AnchorChipTM , 

Bruker Daltonics) using dried droplet method, and dried at room temperature before 

analysis. 

Volume (μL) =  Weight of Pellet (mg) x 50 μL 

 

18.8 mg 

  

 Equation 2.1 
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2.3.4 MALDI-TOF MS Analysis 

Mass spectra were generated  with a MALDI-TOF mass spectrometer (Ultraflex I 

TOF/TOF, Bruker Daltonics) operated in linear delayed extraction positive ion mode. 

Nitrogen laser (λ = 337 nm) at a frequency of 20 Hz was employed for desorption/ 

ionization and a mass range from 3000 Da to 35000 Da was selected. Spectra were 

calibrated using Protein Calibration Standard I (Bruker Daltonics), based on the average 

values of [M+H+]+ of insulin, ubiquitin I, cytochrome C, myoglobin, at ‘mass/charge’, 

(m/z) 5734.56, 8565.89, 12361.09, and 16952.55, respectively. The mass accuracy was on 

the order of 0.05%. A total of 2000 shots was taken from two spots of the same sample. 

2.3.5 Data Analysis 

2.3.5.1 Preliminary Analysis 

In the establishment of the sample preparation strategy, minimal data analysis was carried 

out. Spectra were overlaid and visually examined for presence of peaks, which was 

evidence that proteins were detected; differences and similarities in peak location and 

intensities, reflecting on different proteins and their relative abundances; and observable 

drift in baseline, an indicator of the quality of the spectrum. Spectra with minimal or no 

observable drift in baseline were considered for evaluations of the sample preparation 

strategy.  

2.3.5.2 Using Data Analytic Pipeline of Morgan et al.32 

In the application of the established sample preparation strategy, for protein profiling of 

breast cancer cell lines, two data analytic routines were utilized, one that was developed 

and used by Morgan et al.32 and the other, a commercial software, BioNumerics version 

7.3.1 (Austin, Texas; www.applied-maths.com), following the instructions provided. The 

http://www.applied-maths.com/
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Morgan data analytic pipeline consists of preprocessing, pattern recognition, and 

classification utilities written in MatLab (The Mathworks, Natick, MA). The dataset 

consisting of 73 spectra/samples of the breast cancer cell lines, shown on Figure 2.9, was 

generated following the optimized sample preparation method. The raw spectra were 

exported as ASCII files and converted to CSV files before being uploaded into Matlab. 

Prior to statistical analyses spectra were preprocessed using routines from the Matlab 

bioinformatics toolbox. Each of these spectra initially had total features of about 130,600 

different ion masses from m/z 3000 to 30000. Given the lack of discriminating 

information at feature values higher than m/z 25000, only about 100,600 feature values 

below m/z 25,000 were used for further analysis.  

 Upon preprocessing the resampling algorithm in the Matlab bioinformatics 

toolbox was then employed to reduce the data to 8,000 mass features per spectrum. This 

algorithm was designed for complex mass spectrometric data to preserve significant 

peaks heights while eliminating features representing noise. The data was then broken 

into three data sets containing three combinations: (1) normal versus non-metastatic (47 

samples), (2) normal versus metastatic (36 samples), and (3) non-metastatic versus 

metastatic (63 samples). For each of these comparisons, further feature selection was 

performed using single-feature two-group t-tests to select m/z values of high 

discriminating power. Features were retained for further analysis if they were associated 

with a calculated Student’s t-statistic larger than the critical value of t (Bonferroni-

corrected error rate of 0.05). This strategy produced number of features ranging from 230 

to 301, which were then used for principal component analysis. 

2.3.5.3 Using the Commercial BioNumerics Data Analytic Procedure 
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 Alternatively, the data files of the 73 spectra were imported into the BioNumerics 

software interface and preprocessed using the given methods. Upon peak detection, peak 

matching was done to create peak classes that represent detected proteins. In 

BioNumerics a peak is defined on the basis of the spectrum during preprocessing while a 

peak class is defined on a basis of a group of spectra and peak classes are generated 

during peak matching. Many peaks may have been detected at a signal-to-noise ratio of 5 

during spectral preprocessing, but 109 peak classes, corresponding to expressed proteins, 

were created during the subsequent peak matching. On the basis of these 109 proteins, 

relationships among the samples were determined by cluster analyses. 

2.3.5.3.1 Cluster Analysis 

Cluster analysis is a multivariate procedure of pattern recognition that detects natural 

groupings in data and examines similarities and dissimilarities between observations33. 

BioNumerics software was used according to the UPGMA algorithm to obtain 

hierarchical agglomerative clustering of the data. This algorithm constructs a rooted tree 

(dendogram) that reflects the structure of a similarity matrix in a pairwise comparison 

where the distance between two clusters is the distance between the average over the 

elements of each cluster. The distances were measured with Pearson Correlation, as a 

similarity metric. 

2.3.5.3.2 Principal Component Analysis (PCA) 

Similar to the hierarchical clustering, PCA is also a clustering method that operates 

without any prior knowledge of grouping34. However, PCA is a mathematical procedure 

for reducing dimensionality of data. It extracts variance in the data and simultaneously 

transforms possibly correlated variables into a smaller number of uncorrelated variables, 
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the principal components, which are linear combinations of the original variables. The 

first principal component accounts for as much of the variance in the data as possible 

while the other components account for the remaining maximum proportion of the 

variance. PCA computation, involving covariance matrix and standardized principal 

component scores, was performed using BioNumerics and the in-house pipeline of 

Morgan et al.32 

2.4 RESULTS AND DISCUSSION 

In this study we used NIH-3T3 cell line as a model for developing the MALDI-MS cell 

profiling method since it can be easily cultured and represents a stable, and fast growing 

cell line35. Despite the complexity of the sample and limited details on MS profiling of 

mammalian cells, we focused our work to two areas. The first goal was to develop an 

optimum sample preparation method for MALDI-TOF MS characterization of different 

mammalian cell types in a fast and reproducible manner. Such a method should permit 

protein fingerprinting of mammalian cells in the range of 3000-30000 so as to facilitate 

the differentiation of cells. If such a method could generate a large number of peaks, 

especially above m/z 15000, an upper limit obtained by Zhang et al.,30 it would increase 

the chance of generating unique spectral profiles25 that contain more information about 

the differences and similarities among mammalian cell types.  

 The second goal was to use the established method to obtain distinctive spectra of 

the breast cancer cell lines and to classify the cell lines based to their spectral 

fingerprints. For the purpose of establishing the desired methodology, we investigated 

several matrixes that include DHB30, SA20, 28, CHCA27, and DHAP31, 36; organic solvents 

such as chloroform, acetone, ethanol25, methanol23, isopropanol19, acetonitrile, and 
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trifluoroacetic acid; and matrix additives such as di-ammonium hydrogen citrate31, that 

have previously been used in MALDI analyses37. The purpose of matrix solvents and 

additives is to enable the release of proteins from the cells while the matrix aids in the 

ionization of proteins and thus influences the mass range of the proteins detected36. 

2.4.1 MALDI-TOF MS Profiling: Method Development using NIH3T3 Cell Line 

2.4.1.1 Establishment of the Sample Preparation Protocol 

Since it is well appreciated that the optimization of key parameters in sample preparation 

is empirical and that the discovery of a desirable method is a matter of trial-and-error 

experimentation38, we sought to find out if spectra with protein peaks spanning a wide 

mass range i.e. 3000-20000, would be obtained from MALDI-MS analysis of  whole-cell 

NIH3T3 pellet rinsed with ACN solution (VACN:VdH2O:VTFA = 10:10:1), DHB matrix 

solution (10 mg/mL DHB in VACN:VdH2O:VTFA = 10:10:1) or just water. Rinsing cells 

with DHB matrix solution was a strategy used by Zhang et al. who first reported MALDI 

spectral profiles of mammalian cells in the m/z range 4000-1600030. Our hypothesis was 

that changing the composition of the DHB rinsing solution in a similar manner as those 

who attempted to generate high-mass spectral profiles for bacteria ( i.e. varying matrixes, 

their solvents and additives), might result in observation of peaks with m/z > 16000. For 

spotting samples on the target plate, we initially applied the matrixes, DHB, DHB mixed 

with CHCA (VDHB:VCHCA = 1:1), and a mixture of DHB, CHCA and SA 

(VDHB:VCHCA:VSA = 1:1:1), since DHB is a suitable matrix for proteins in complex 

biological mixtures30. All samples were spotted onto a prestructured (AnchorChip 600) 

target plate by the common dried droplet method24. From these attempts, we obtained 

spectra with few or no peaks at all. The useful spectra consisted of about 20 peaks in the 
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mass range 4000-16000 and were obtained, as shown on Figure 2.2, from cells rinsed 

with DHB in water (NIH3T3 [ spectrum A]) or acetonitrile solution (BHK [spectrum B] 

and HeLa [spectrum C]), and spotted with a co-matrix of DHB and CHCA. Although 

these spectra could be reproduced, they lacked peaks above m/z 16000. 

 We then diversified both our rinsing solution and spotting matrix by involving 

different organic solvents and matrixes. Sonication and rinsing of samples with aqueous 

chloroform solution (VCHCl3:VdH2O = 1:1) to delipidate the cells resulted in spectra with 

number of peaks in the range 50-80, having slightly higher intensities compared to the 

former spectra consisting of about 20 peaks . However, hardly any peaks with m/z 

>16000 were obtained from the chloroform-treated sonicated samples irrespective of the 

spotting matrix (Figure 2.3). The number of peaks  was further elevated to ≥100 when the 

DHB-rinsed instead of chloroform-rinsed samples were homogenized with with a 26-G 

needle fixed to a 1 mL syringe and spotted with DHAP matrix (Figure 2.4). Action of 

needle and syringe increases the surface area for proteins within the rubble of the 

complex cell material to be effectively mixed and co-crystallized with the matrix, and 

may have positive effect on the MALDI process. However, sonication of syringe-

processed samples resulted in low-quality spectra with fewer peaks and lower intensities 

(Figure 2.4 – spectrum E), making it unsuitable for mammalian cell sample preparation. 

Varying sample processing conditions without changing the DHAP spotting matrix 

influenced our choice of DHAP as a suitable spotting matrix for mammalian cells, 

especially since peaks with m/z around 20000 were observed.  
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Figure 2.2 The intial MALDI TOF spectra of the cell lines NIH3T3 (blue), BHK (red) 

and HeLa (green). 



www.manaraa.com

 

63 
 

 

 

Figure 2.3 Spectra of NIH3T3 cells generated after rinsing cells with a mixture of 

chloroform and water (1:1, v/v), in the presence or absence of sonication or 

homogenization by syringe and needle, and after spotting samples with different MALDI 

matrix compounds. Hardly any peaks with m/z >16000 were obtained. Blue-, red-, green- 

and magenta-colored spectra – samples were sonicated or homogenized before rinising 

and spotted with DHAP, DHAP mixed with AHC, DHB and SA matrixes, respectively. 

The black-colored spectrum was recorded from MALDI analysis of the sample that was 

not sonicated.
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 With further modifications of the rinsing solution, the number of peaks were 

increasing. Figure 2.5 shows effect on the cell spectra of the five different cell rinsing 

solutions: DHB/isopropanol, DHB, DHB/methanol, SA, and DHAP, respectively. Of 

these five, DHB/isopropanol resulted in peaks at m/z 16000 and overall higher intesities 

for many peaks. Hence, the DHB/isopropanol rinsing solution was optimized to find the 

DHB and isopropanol proportions that could lead to spectra with high number of peaks. 

Use of the optimized novel rinsing matrix solution of the composition 5 mg/mL DHB in 

(VC3H8O:VACN:VdH2O= 2:1:1) and the established DHAP spotting matrix solution31 

resulted in spectra with more than 200 peaks. More specifically, spectra of about 200 

peaks were obtained in the m/z range 3000-20000 when using these two optimized matrix 

solutions, one for rinsing the cells, called “matrix solution A”, and the other for spotting 

the cell sample, referred to as “matrix solution B”. The whole analysis was completed in 

30-45 min, the shortest time ever for MALDI profiling of cells. 

 In spite of the novelty of our sample preparation, there are other sample 

preparation strategies for MALDI profiling of mammalian cells that have been published 

(Table 2.1). These strategies differ with respect to the MALDI reagents and 

methodologies used. While spectral profiles with unique peaks were obtained using these 

strategies, certain features make them less suitable for robust profiling with the ultimate 

goal of application in disease diagnostics. For example, sample pre-treatment involving 

fractionation and sample clean-up as was respectively done by van Adrichem et al.9 and 

Lokhov et al.29 makes the profiling seem tedious and costly. Also, spectra generated by 

Marvin-Guy et al.20 and Dong et al.27 from minimally processed cell samples, without 

rinsing and extraction steps, did not have any peaks above m/z 16000. Our method was  
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Figure 2.4 Spectra of needle- and syringe-homogenized, DHB-rinsed and DHAP-spotted 

NIH3T3 samples showing peaks above m/z 16000. Blue –cell pellet rinsed before 

homogenization, red – cell pellet homogenized after addition of DHAP spotting matrix, 

green – cell suspension in DHB not pelleted, magenta – cell pellet rinsed with water 

instead of DHB, and black – the homogenized cell pellet had been sonicated before 

spotting. 
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Figure 2.5 Effect on the cell spectra of the five different cell-rinsing matrix solutions, 

DHB/Isopropanol (A), DHB only (B), DHB/methanol (C), SA only (D), and DHAP only 

(E). Spectra A, B and C, obtained from DHB-rinsed cells have peaks above m/z 16000. 

Of these DHB/Isopropanol resulted overall in higher-intensity peaks. 
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adopted from Zhang et al.30 who simultaneously processed cells by rinsing, lysis, and 

extraction, and possibly desalted them, using DHB solution. One solution was used to 

perform four tasks in one step, a strategy that makes sample preparation time-, and cost-

effective. However, unlike in Zhang et al.30 where only DHB solution in water was used 

to lyse cells and extract proteins directly from cells without any sample clean-up, we 

useda solution of DHB, isopropanol and acetonitrile for rinsing cells, cell lysis and 

protein extraction. 

 While Zhang et al.30 reported spectra in the m/z range 4000-16000, we obtained 

typical spectra with m/z range 3000-20000. We believe that addition of a mixture of 

organic solvents (i.e. acetonitrile – efficient extraction solvent; and isopropanol – a 

lipophilic solvent with good extraction properties) and a mild acid to the cells followed 

by vigorous mixing resulted in simultaneous lysis of the cells, extraction and 

solubilization of some lipids from the cell membrane, and extraction and precipitation of 

both the hydrophilic and hydrophobic proteins directly from the cells. Since cell 

membrane proteins co-exist with lipids, extraction of lipids exposes proteins and makes 

them more accessible than would do mild acid treatment alone. When the sample-rinsing 

matrix solution mixture was spinned down at 4 ºC, the extracted proteins were retained in 

the pellet while the lipids were removed with the supernatant. Subsequent spotting of the 

dH2O-diluted and 2% TFA-acidified cell pellet onto a prestructured MALDI target with 

DHAP matrix solution resulted in the generation of peaks up to m/z 20000. Since we 

modified the composition of both the rinsing matrix solution and the spotting matrix 

solution in sample preparation to extend the m/z range of peaks from 4-16k to 3-20k, 

further modifications of these two solutions could lead to acquisition of spectra in higher.



www.manaraa.com

 

 

2
4
 6

8
 

Table 2.1 Previously used and currently proposed MALDI-TOF MS profiling strategies for mammalian cells9, 20, 29-30 

 

 Different MALDI-TOF MS Profiling Strategies 

van Adrichem et al., 

1998 

Zhang et al., 2006 Marvin-Guy et al., 

2008 

Lokhov et al., 2009 The One-step Cell 

Processing 

      

Key Steps in Sample 

Preparation 

     

Washing of Cells PBS PBS - 0.9% NaCl PBS 

Rinsing of Cells - DBH/water - Cold trypsin in 0.9% 

NaCl 

DBH/water/ACN/ 

Isopropanol 

Cell Lysis Lysis buffer DBH/water - - DBH/water/ACN/ 

Isopropanol 

Extraction - DBH/water - - DBH/water/ACN/ 

Isopropanol 

MS Sample Pre-

treatment 

Detergent for removal 

of lipids 

- - ZipTipC18 for 

desalting 

DBH/water/ACN/ 

Isopropanol 

Sample Dilution - DBH/water 0.1% TFA - 2% TFA 

Spotting Matrix Ferulic acid CHCA; SA SA DHB DHAP/AHC 
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Type of Sample Cell lysate Mixture of cells and 

lysate 

Cell suspension Protein fragments Mixture of cells and 

lysate 

Test Cells CHO cell line K562 cell line T84 cell line Primary fibroblasts NIH3T3 cell line 
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mass range (i.e. >20k) that could precede generation of more unique MALDI fingerprints 

for cells and greater potential for discovery of unique biomarkers. Such changes would 

still require optimization of key steps to ensure reproducibility and reliability of MALDI 

profiles39 

2.4.1.2 Determination of the suitable Cell Concentration 

Successful comparison of spectral patterns has been reported to be dependent on the 

reproducibility of mass spectra16, 40. Poor reproducibility, as shown by inconsistent 

appearance of peaks, can lead to gross errors41. Cell concentration is one of the 

experimental factors with strong effect on the observed mass spectra17, and hence their 

reproducibility. Previous studies on bacterial profiling have shown that less satisfactory 

spectra with fewer peaks could be resulted from samples with either too high or too low 

cell concentrations42-43. In this study a cell concentration higher than 380 mg/L and 

lower than 12 mg/L yielded mass spectra that could not be reproduced and had raised 

base line, respectively (data not shown). This implies that there is an optimal 

concentration range that could give good quality spectra, and this is in agreement with 

above-mentioned published reports.  

 The effect of cell concentration on the number of peaks was investigated by 

profiling varying concentrations of the processed NIH3T3 cell pellet. After the one-step 

processing, the cell pellet weighing 18.8 mg was dispersed in cold 50 µL dH2O to make 

sample A. Next, this sample was serially diluted in a 1:1 ratio resulting in 9 different 

samples with the concentrations 380, 190, 95, 47, 24, 12, 6, 3, and 1 mg/L, respectively. 

The experiment was performed in triplicates. The spectra of the first six  samples from 

one of the triplicate experiments are shown in Fig 2.6. The corresponding number of 
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peaks in these samples were 143, 215, 225, 272, 285, and 261, respectively. It was 

observed that as the cell concentration decreased, the number of peaks in a spectrum 

increased for the first five concentrations but decreased with further sample dilution. The 

24 mg/L cell concentration not only yielded the largest average number of peaks but it 

also resulted in repeatable spectra characterized by lowest variability or smallest standard 

deviation of the average number of peaks (Figure 2.6). From these results we conclude 

that the optimum cell concentration for MALDI profiling of NIH-3T3 cell line is around 

24 mg/L. Using the same strategy the optimum concentration for MALDI profiling of 

the breast cancer cell lines was around 190 mg/L (Section 2.4.2 below). 

2.4.1.3 Short-term Stability of the Cell Sample 

Apart from the cell concentration, other experimental factors such as time and 

temperature of sample preparation and storage are important for whole cell analysis since 

they influence stability of the proteins. The stability of protein samples during 

preparation could be improved through inhibition of activity of endogenous proteases by 

maintenance of samples on ice or addition of a protease inhibitor. This short-term 

stability was investigated in two ways: 1) processing two parallel samples, one with and 

one without protease inhibitor (2 mM phenylmethylsulfonyl fluoride, AMRESCO, Solon, 

OH, USA); and 2) varying the time between the one-step sample processing and 

application of matrix while keeping samples on ice at 0 ºC. 

 Figure 2.7 shows mass spectra of samples processed in the absence and the 

presence of protease inhibitor, respectively. No differences were observed between these 

two spectra. This implies that during time of processing of about 20-30 min at 0 ºC 

protease activity, if any, is minimized and the integrity of the sample is maintained. 
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Figure 2.6 Right panel: The bar graph of the average peak numbers and standard 

deviations of spectra generated from triplicate samples of NIH3T3 cells sequentially 

diluted into six concentrations 380, 190, 95, 47, 24 and 12 mg wet cell pellet weight/L 

water. 24 mg/L was found to be the optimum concentration because it resulted in a 

combination of large number of peaks and a small standard deviation. The error bars 

represent  standard deviation. Left panel: Representative spectra from each of the six 

dilutions. Although the spectra are similar the average number of peaks increase with 

decreasing concentrations and plateaus at 47 mg/L onwards. 
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Therefore protease inhibitor is not needed. In addition, sample stability was tested by incubation 

of multiple samples on ice at different time durations, i.e. 0 h, 3 h, 5 h and 19 h, before 

application of the spotting matrix. The aim was to see if the spectra would be the same if the 

samples are left on ice prior to MALDI MS. In this experiment, sample preparation (i.e. one-

step processing) and parameters for instrumental analysis were kept the same for all 

samples while duration prior to MALDI analysis was varied. Mass spectra of the 0 h, 1h, 

3 h and 5 h cell samples expressed nearly all same peaks while differences such as at m/z 

3457 and 15848 were observed between these four samples and the 19h sample (Figure 

2.8). Stability of the samples is not affected by long incubation on ice prior to MALDI 

analysis, but repeatability might be compromised. Nonetheless, short or no incubation is 

essential to ensure the rapidness of the analytical methodology. 

2.4.2 Application of the Established Methodology in Discrimination of Breast Cancer 

Cells 

Traditional approaches to analysis of biochemical systems associated with human disease 

involve study of biochemical transformations and identification of target molecules. 

Typically such studies vary only a few experimental factors thought apriori to be relevant 

with the result that they reduce complexity of research hypothesis but may preclude 

important information that would better characterize the complexity and diffusivity of the 

same biochemical systems. With the growth of the “omics” technologies it has been 

possible to characterize these biochemical systems on the basis of fingerprints displayed 

by their cellular proteins of previously unknown identities. The key is to record, in a 

single analysis, in the form of a profile, the relative abundances and masses of several 

hundreds or thousands of proteins measured. MALDI-TOF MS provides this information 

in a high-throughput, simple and rapid manner44. The spectral fingerprints generated by  
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Figure 2.7 Mass spectra showing no effect from treatment of NIH3T3 with PMSF 

protease inhibitor. Blueviolet – spectrum from inhibitor-treated cells and firebrick – 

spectrum from control. 
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Figure 2.8 Spectra showing effect of short-term stability when incubated on ice prior to 

MALDI analysis. The middle column has the actual spectra while the two side columns 

are zoom-in views of the peaks at m/z 3457 and 15848. The spectra from 0 h, 1 h, 3 h and 

5 h samples had nearly all same peaks while differences such as at m/z 3457 and 15848 

were observed between these four samples and the 19 h sample. To ensure repeatability, 

samples should not be kept too long on ice prior to MALDI analysis.
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the MALDI-TOF MS are highly dimensional data that require application of 

bioinformatics and multivariate statistical methods for pattern recognition and revelation 

of distinguishing features. In the case of cancer, for instance, different biological samples 

such as body fluids, biopsies and intact tissues have been profiled using MALDI MS to 

establish and rapidly screen for disease biomarkers. However, regarding breast cancer, 

few attempts have been made to profile the breast cancer cell lines, the very essential and 

widely used systems in studying the complex breast cancer pathobiology and in screening 

of newly developed therapeutics. 

2.4.2.1 Subtypes and profiling of breast cancer 

Breast cancers are molecularly heterogeneous manifestations of one disease45. They have 

been grouped into five subtypes that are not only biologically distinct but also have 

specific clinical course and response to treatment46. The five molecular subtypes are 

luminal A, luminal B, ERBB2-overexpressing, basal-like and normal-like47. Luminal A 

and B tumors express markers of the luminal epithelial cells lining the normal breast 

ducts and are ER-positive. The basal-like tumors express markers of the basal epithelial 

cells lining the normal breast ducts and are ER-negative. The ERBB2-overexpressing 

tumors express genes co-amplified with ERBB2 that encodes HER2 and are HER2-

positive.  Normal-like tumors share expression patterns of the normal breast tissue. Of 

these, the basal-like breast cancer has poor prognosis and hardly any treatment48.  

To improve the understanding of the breast cancer phenotypes, the merits of 

integrated genomic and proteomic profiling of the breast cancer cell lines have been 

appreciated49. A comprehensive comparison of the molecular and biological features of a 

collection of 51 breast cancer cell lines with those of primary tumors performed by Neve 
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et al. revealed that the breast cancer cell lines resemble primary tumors with respect to 

genomic and transcriptional abnormalities as well as response to pathway-targeted 

therapeutic agents6. Similarly Kao et al. profiled gene expression and DNA copy number 

alterations of 52 widely used breast cancer cell lines and made same observations50. 

Based on the resemblance of cell lines to primary tumors, the breast cancer cell lines have 

been categorized into 3 subtypes: luminal, basal A and basal B. Luminal cell lines are 

ER-positive. Basal A cell lines are associated with BRCA1 expression. Basal B cell lines 

display mesenchymal and stem cell properties and have upregulated EMT51. Both basal A 

and basal B cell lines share same expression patterns of the basal-like tumors while 

luminal cell lines resemble either luminal A or luminal B tumors. 

It is evident from the works of Neve and Kao and their co-workers that genomic 

and proteomic analyses of breast cancer cell lines can accurately reflect how genes 

contribute to breast cancer pathophysiology. Proteomic profiling of breast cancer cell 

lines has been previously undertaken using surface-enhanced laser desorption/ionization 

(SELDI) ProteinChip™ arrays52. The cell lines were successfully sub-classified into 

similar groups as with corresponding earlier gene expression and immunohistochemistry 

studies. A diagnostic protein signature was developed and new biomarkers identified. 

The study demonstrated that MS-based methods can be reliably employed in profiling of 

breast cancer cell lines. While the SELDI MS profiling involved a lengthy sample 

preparation procedure due to prior incubation of protein sample with the chip and 

subsequent purification, our MALDI-TOF MS profiling strategy involves just a one-step 

cell sample processing, the procedure of which is simple and rapid. Our goal was to use 

this established MALDI-TOF MS-based method as an alternative to rapidly profile breast 
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cancer cell lines and to demonstrate their discrimination based on the biological 

differences captured in the spectral fingerprints, a feature that is invaluable for 

development of diagnostic tool and biomarker discovery. In this study, the cell lines 

profiled were MCF-7, MCF-10A, MDA-MB231, MDA-MB468, SKBR-3 and T47-D, 

and their characteristics are shown in Table 2.2.  

 Six but one of these cell lines are human breast cancer cell lines widely used as in 

vitro tumor models. MCF-10A is an immortalized normal breast cell line derived from 

fibrocystic disease and commonly used as a non-cancerous control in breast cancer 

studies53. Previous studies on gene expression microarray and immunohistochemical 

analyses, as well as SELDI MS profiling have shown that MCF-7, SKBR-3 and T47-D 

share characteristics of the luminal-like tumors while MCF-10A and MDA-MB231 share 

same characteristics as the basal-like tumors54. MDA-MB468 was not included in that 

study. Since SELDI MS, a MALDI MS-related analysis could reveal distinct groups as 

with other biochemical approaches, we hypothesized that MALDI-TOF mass spectral 

fingerprinting following pre-treatment of breast cancer cell lines using the one-step cell 

sampling processing should result not only in similar groupings but also in observation of 

some known and possibly new disease biomarkers. To test this hypothesis, an inhouse 

bioinformatics pipeline and a commercial software were applied in analyses of mass 

spectral data of six breast cell lines. The specific aim was to distinguish the metastatic 

cell lines, MDA-MB231 and MDA-MB468 from the non-metastatic cell lines, MCF-7, 

SKBR-3 and T47-D, and in turn, from the normal cell line, MCF-10A.  
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Table 2.2. The clinicopathological features6, 50, 54 and the number of spectral profiles of 

the 6 breast cancer cell lines  

 

Cell line Subtype ER

* 

PR

* 

HER2

* 

Source Tumor type No. of spectra 

MCF-7 Luminal A + + - PE Met AC 15 

MCF-10A Basal B - - - RM F 10 

MDA-

MB231 

Basal B - - - PE Met AC 16 

MDA-

MB468 

Basal A - - - PE Met AC 10 

SKBR-3 HER2 - - + PE AC 12 

T47-D Luminal + + - PE IDC 10 

       Total: 73 
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2.4.2.2 Repeatability and Consistency of Cell Morphology 

Initially cell morphologies of the cell lines in several consecutive passages were tested 

for similarity. To do that, MCF-7 and MDA-MB231 were cultured and passaged 

following designated protocols. Each passage was cultured in two T75 flasks resulting in 

two replicate samples. In order to ensure reproducible MALDI-MS profiles, efforts were 

made to get similar cell morphologies throughout different passages. Three images 

(Figure 2.7) were obtained from three different passages of MCF7 and MDA-MB231 

cells to show that, prior to harvesting, the cells had similar morphology and confluency.  

2.4.2.3 Selection of the Suitable Time for One-step Processing of Breast Cancer Cells 

In addition to ensuring consistent cell morphology, an attempt was made to find a 

suitable length of time at which the harvested cells could be mixed with the 

extraction/lysis matrix solution A prior to pelleting. This time is critical because if it is 

too short, the extraction and removal of lipids will not be sufficient to release the proteins 

and make them available for ionization during MALDI; conversely, if this time is too 

long, release of endogenous proteases may lead to degradation of the protein analyte and 

reduction of MALDI-MS signal. To find the suitable length of time for sample 

processing, cells were resuspendend in 4 mL PBS after harvesting, and then sub-divided 

into 1 mL aliquots. After washing in PBS, the four samples were treated with the 

extraction/lysis matrix solution A for 5, 20, 100, and 200 sec, respectively. The cell pellet 

of each sample was dispersed in water and diluted to concentrations of 0.19 and 0.094 

mg/µL, respectively. The MALDI-MS spectra of all the samples were generated the 

peaks above noise level of about 200 a.u. were manually counted and used to evaluate the 

effect of the duration of extraction/lysis on the MALDI-MS spectra of the cells. The  
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Figure 2.9 Light microscope images of MCF-7 (A, B and C) and MDA-MB231 (D, E and 

F) cells from three consecutive passages. Scale bar = 100 m. The cell morphology was 

similar throughout successive passages.
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Figure 2.10 Effect of the time of rinsing cells with extraction/lysis matrix solution on the 

spectra of MCF-7 and MDA-MB231. 100 sec was most suitable because of large average 

number of peaks and small standard deviation at cell concentration of 0.094 mg/µL. 
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experiment was performed in triplicates for the MCF-7 and in duplicates for MDA-

MB231 cells. 

 The duration of extraction/lysis was found to have little or no effect on the 

number of spectral peaks as shown on Figure 2.8. For MCF-7, although the mass spectra  

of about the same number of peaks (200) were obtained at each concentration after 

treatment with extraction/lysis solution for 5, 20, 100 and 200 sec, spectra from 100 sec 

treatment had relatively higher intensities than all other treatments, indicating high 

signal-to-noise ratio. For MDA-MB231, a trend was observed only at higher 

concentration (0.19 mg/µL) at which the highest average number of peaks was obtained 

from 100 sec treatment. Based on these results the time 100 sec and the 0.19 µg/µL cell 

concentration were used for profiling of the human breast cancer cell lines. 

2.4.2.4 PCA Analysis using the In-house Data Analytic Pipeline 

Prior to PCA analysis, selection of discriminatory features by the multiple t-tests was 

performed resulting in data matrix sizes of 47 samples by 301 features for normal versus 

non-metastatic, 36 samples by 230 features for normal versus metastatic, and 63 samples 

by 280 features for metastatic versus non-metastatic. For these 3 comparisons, 

projections of the data into the space of the first two principal components were found to 

be adequate to achieve 100% leave-one-out cross-validated classification accuracy, based 

on Mahalanobis distances to cluster group centroids. Group membership was predicted 

using Mahalanobis distance as a similarity measure. The Criterion for classifying a 

sample as a member of the group is that the Mahalanobis distance from the sample to the 

group centroid is smallest. The higher classification accuracy and the lower error imply 

that the discrimination between the groups is greater32.  
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Figure 2.11 The 73 MALDI-TOF MS spectra (replicates) of six human breast cancer cell 

lines. 26 green spectra for the cancerous and metastatic cell lines, MDA-MB231 and 

MDA-MB468; 37 red spectra for the cancerous and non-metastatic cell lines, MCF-7, 

SKBR-3 and T47-D; and 10 blue spectra for the normal and transformed cell line, MCF-

10A (control).
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In Figure 2.10 samples in each of the three comparisons were clustered at 100% 

classification accuracy into two distinct groups, indicating discrimination by spectral 

fingerprints, as demonstrated by the 3 plots of projection of samples into the space of the 

first 2 PC’s In each plot the PC scores representing replicate spectra are well demarcated 

by 95% ellipses. The plots provide visual summary of the relationships among the breast 

cancer cell lines being compared. The plots clearly show that all the 10 spectra normal 

cell line (MCF-10A) are different from the 37 spectra of the non-metastatic cell lines 

(MCF-7, SKBR-3 and T47-D), and so are the 10 spectra of the normal cell line compared 

to the 26 spectra of the metastatic cell lines (MDA-MB231 and MDA-MB468), as well as 

the 26 spectra of the metastatic cell lines compared to the 37 spectra of the of the non-

metastatic cell lines. Slight overlapping of the group ellipses occurred on comparing the 

metastatic with non-metastatic in the last plot, indicating some similarity between these 

groups. No PC scores, however, lay in the intersection area of these 2 group ellipses.  

The PC scores of few samples were found lying outside the ellipses. It is unlikely 

that these samples were misclassified given that the classification accuracy was 100% 

and also since they lie next to a particular cluster. It is likely though that these samples 

are outliers, however, no outlier tests were performed. Moreover, it is possible that 

clustering on a two PCs space was not optimal to orientate all the scores to have shorter 

Mahalanobis distances from cluster centroid and hence be in one cluster. This is evident 

from the discrimination of metastatic versus non-metastatic where the first two PCs 

explain only 50% of the variance and scores of about 10 samples lay outside of the 

ellipsoids. Projection of the scores on a three PCs space might have made them to be at 
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much more closer proximity to the cluster centroid as to have all of them included in 

ellipsoids as the remaining variance is sufficiently captured by the third PC.  

Overall, the clusters of features of cell lines being compared are accurately separated 

when projected on the low dimensionality space made up of the first two principal 

components (Figures 2.8 and 2.9), indicating that the spectral fingerprints generated by 

MALDI-TOF-MS following the one-step cell sample processing, contain discriminating 

features. Although the in-house bioinformatics pipeline could distinguish between 

metastatic and non-metastatic as well as between these and normal transformed groups of 

cell line spectra, it gives limited information about comparable attributes of the spectra. 

For example, the data analytic process does not reveal the discriminating features neither 

does it show how related the member spectra are. Therefore, it is inadequate for MALDI-

TOF MS characterization of breast cancer cells.  

2.4.2.5 Peak Selection and Matching using BioNumerics Software 

To investigate how related the spectra are and what features enable discrimination of the 

breast cancer cell lines, the 73 raw spectra of the six cell lines were reanalyzed using 

BioNumerics software (Austin, Texas; www.applied-maths.com) following the 

instructions provided. First, a database of the 73 spectra was created and next spectral 

data files were imported into the BioNumerics interface and preprocessed using the given 

methods. Upon peak detection, peak matching was done to create peak classes that could 

be used for comparisons. In BioNumerics a peak is defined on the basis of the spectrum 

during preprocessing while a peak class is defined on a basis of a group of spectra and 

peak classes are generated during peak matching. Many peaks may have been detected at 

a signal-to-noise ratio of 5 during spectral preprocessing, but about 100 peak classes were 

http://www.applied-maths.com/
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Figure 2.12 Principal component analyses and classification of 3 sets of data, first panel: 

normal against non-metastatic, second panel: normal against metastatic, and third panel: 

non-metastatic against metastatic 
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created during the subsequent peak matching. A binary table of presence and absence of 

peak classes showing expression of 110 proteins by the 6 cell lines (Figure 2.11) was 

exported in excel. The heatmap version of the table showing intensities of the peaks or 

expression levels in different colors was also generated but could not be exported because 

of limited access to this commercial data analytic software. In the binary table the 

presence of a peak or expression of a protein as well as absence of a peak or no protein 

expression is indicated by different colors. The cell lines are characterized by protein 

expression, where the pattern made by spectral features, peaks (proteins) and their 

relative intensities (expression levels) forms the fingerprint of the cells. It can be 

observed from Table 2.3 that none of the replicate spectra of the cell lines have identical 

peaks. This shows that there is some level of variability among the replicate spectra. 

However, different cell lines could still be distinguished by their spectral features as 

evidenced by the comparisons described below. It is also noteworthy from the table that 

MDA-MB468 lacks many of the peaks below m/z 7000 compared to all other cell lines. 

Our sample preparation method and reagents could have been unfavorable to cellular 

proteins of this cell line in that m/z range. It is strikingly evident though that absence of 

the peaks or lack of protein expression was highly repeatable among the replicates of 

MDA-MB468. 

2.4.2.6 PCA Analysis using BioNumerics Software 

The 73 mass spectral protein profiles were further analyzed by performing 2 different 

unsupervised clustering methods, principal component analysis (PCA) and hierarchical 

clustering. The unsupervised hierarchical clustering of the spectra and the proteins was 

done using Pearson correlation as the similarity metric. Its results were displayed as 
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Table 2.3 Binary representation showing presence and absence of protein peaks in the spectra of each of the 73 samples. Red – 

presence of a peak. White – absence of a peak. 
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dendogram. PCA allowed data reduction and visualization of samples (spectra or entries) 

and proteins (peak classes or characters) on a 2 PC’s space (for samples/entries and 

proteins/characters), and second on a 3 PC’s space (for samples/entries only). On a 2 

PC’s space PC scores of samples appear on the 1st plot and PC loadings of the proteins on 

the 2nd plot. Both plots are complementary and superimposable. On a 2 PC’s space 

distinct clusters of the cell lines could hardly be observed except for the MDA-MB468 

(far right of the 1st bi-dimensional plot). However, no peak classes/characters were found 

to correspond with the MDA-MB468 cluster looking at the 2nd bi-dimensional plot. 

Hence, no unique peak classes of this distinct cluster could be observed. In general, 

owing to the inability to obtain distinct clusters for all the rest of the 5 cell lines, it is hard 

to locate unique peak classes of the cell lines, if any. The first 2 PC’s space accounted for 

50% of the variance while the first 3 PC’s space described 60% of the variance. As a 

result visualization would be better on a 3 PC’s space.  

A distinct cluster of PC scores (turquoise dots) of MDA-MB468 spectra was 

observed with 3-D PCA. Two large mixed clusters, one of SKBR-3 and T47-D (yellow 

and purple dots, respectively), and the other of MCF-7, MDA-MB231 and MCF-10A 

(green, red and dark cyan dots, respectively) also resulted from 3-D PCA. While mixed 

clustering of SKBR-3 together with T47-D could be explained by shared characteristics 

of possessing luminal breast cancer behavior and being non-metastatic, co-cluster of 

MCF-7 and MDA-MB231, both of which are molecularly different, as one is luminal and 

the other basal B, is least expected. Such outcome could be explained by either lack of 

sufficiently discriminatory protein peaks from our methodical m/z range of profiling or 

insufficiency of a clustering that is based on all the proteins instead of a selected set that 
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is highly discriminatory. Co-clustering of MDA-MB231 with MCF-10A is reasonable 

because both possess basal characteristics of breast cancers. Although distinct clusters of 

the 5 cell lines (excluding MDA-MB468) were not obtained, majority of the PC scores of 

spectra of these cell lines seem to aggregate together showing that there may be more 

similar than dissimilar features among replicates of each cell line. 

2.4.2.7 Hierarchical Clustering using BioNumerics Software 

In support of the PCA results, hierarchical clustering divided the 73 samples into 2 large 

groups (represented by 2 big branches of the horizontal dendrogram, Figure 2.13) based 

on their similarity. The first branch is shared by all the MDA-MB468 and mixture of the 

SKBR-3 and T47-D replicates. All the MDA-MB468 are on one sub-branch showing that 

they are similar to one another than to spectra of other cell lines, hence they formed a 

distinct cluster as in the PCA analysis above. The mixture of SKBR-3 and T47-D on next 

sub-branch resembled a co-cluster of these two in PCA that could be explained by 

insufficient discriminatory peaks in the spectra of the two cell lines or inability of the 

used classifier to adequately separate the cell lines. 

 The second branch is shared by the remaining replicate spectra of SKBR-3 and 

T47-D, all the replicate spectra of MCF-7, MCF-10A and MDA-MB231. Similar to the 

PCA above it was least expected to have MCF-7 and MDA-MB231 in one branch. In 

general majority of the replicates of each of the cell lines MCF-7, MCF-10A and MDA-

MB468 were clustered together showing that there was high similarity among them 

whereas many of the replicates of MDA-MB231, SKBR-3 and T47-D were not clustered 

together, instead were mixed up showing that there was low similarity among the 

replicates as a result of fewer discriminative features or inadequacy in the classification 
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model. These results are based on the clustering using all 109 proteins. It is possible that 

if the number of proteins had been reduced to include only highly discriminatory ones, 

the sizes and the components of the clusters would have changed. Probably even the 

replicate spectra of MCF-7 and MDA-MB231 would have been classified into 2 distinct 

groups. 

 Hierarchical clustering of 27 breast cell lines, based on their SELDI-TOF mass 

spectra, placed T47-D and MCF-7 in the first branch, and SKBR-3, MDA-MB231 and 

MCF-10A in second branch. The subsequent supervised classification of the 27 breast 

cell lines, based on only the significant differentially expressed protein peaks, placed 

MCF-7, SKBR-3 and T47-D in the first branch, and MCF-10A and MDA-MB231 in the 

second branch, where the first branch and second branch depict the luminal and basal 

subtypes, respectively. In that classification the 3 luminal cell lines were adjacent to one 

another showing that they were highly similar, while the 2 basal cell lines were distant 

from one another showing that they were less similar. MDA-MB468 was not included in 

that study. In the current study, supervised clustering was not accomplished due to 

limited access to the commercial software. Had the supervised clustering been performed, 

the clustering might have been refined and could have been comparable to that by 

Goncalves et al.52 Supervised clustering methods can control within-group variance while 

maximizing beween-group separations to enhance discrimination between groups.55 

 Clustering of the 109 protein peaks (vertical dendogram, Figure 2.13) reveals that 

there may be similarities shared in intensities among peaks in the m/z ranges 3000-5000, 

5000-25000, and 25000-30000. The remarkable observation from this pattern of 

clustering was the distinctly low intensities of the protein peaks of MDA-MB468  
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Figure 2.13 Projection of the PC scores for the 73 samples on a 2-dimensional (first 

panel) and 3-dimensional space (second panel) made up of 2 and 3 principal components, 

respectively. The first panel has 2 plots. The left one is the plot of PC scores of 

spectra/samples (hereby referred to as entries), and the right one is the plot of PC 

loadings showing protein peaks (hereby referred to as characters). The first 2 PC’s 

account for 50% of the variance while the first 3 PC’s explain 60% of the variance.
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Figure 2.14. Protein expression profiling and hierarchical clustering of breast cancer cell 

lines (MCF-7/red, MCF-10A/dark cyan, MDA-MB231/green, MDA-MB468/turquoise, 

SKBR-3/purple, and T47-D/yellow) and 110 proteins based on MALDI-TOF mass 

spectral measurements. Each row represents a protein peak and each column represents a 

spectrum of a cell line. The expression level of each protein is relative to its median 

abundance across all cell lines and is shown according to a color scale. Black, red and 

green are levels on, above and below the median, respectively. The magnitude of 

deviation from median is represented by color saturation. The curve in the profiles panel 

depicts the change in p-values of differential expression between MCF-10A (the control) 

and the 5 breast cancer cells lines.
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replicates and that these low expression levels underscore the observations shown in the 

binary table. Due to limited access to the commercial software, protein peaks that have 

significant differential expression among the cell lines are not known. However, several 

proteins were found to have significant differential expression between MCF-10A and all 

the 5 breast cancer cell lines at an adjusted p-value of  0.05. 

2.5 CONCLUSIONS 

Using NIH3T3 cell line, a novel one-step process method has been developed for whole 

cell analysis of mammalian cells using MALDI-TOF MS. The established method 

involves use of the optimized novel rinsing matrix solution of the composition 5 mg/mL 

DHB in isopropanol: acetonitrile: dH2O (2:1:1 v/v/v) and the DHAP spotting matrix 

solution developed by Wenzel et al.31. Spectra generated had strong signals and consisted 

of the largest array of peaks ever to be reported from direct cell MALDI-MS in the mass 

range 3000-30000.The established method is simple, rapid , direct, and repeatable. Since 

it is a one-step process, it reduces the variables and complications that can lead to 

irrepeatable spectra. By the optimization of pre-analytical conditions such as organic 

solvent, matrix, temperature, inhibitor, time and concentration of cells as well as spotting 

approach, reproducible spectral fingerprints could be obtained. The novel one-step 

profiling was applied in the fingerprinting and discrimination of breast cancer cell lines. 

Four different mammalian cell lines 3T3, MCF-10A, MCF-7and MDA-MB231Three 

non-metastatic cell lines MCF-7, SKBR-3 and T47-D, two metastatic cell lines, MDA-

MB231 and MDA-MB468, and one non-cancerous cell line, MCF-10A were investigated 

and differences among them were observed by comparing their mass spectra. Since the 

mass spectral data is highly dimensional it is mandatory34 that multivariate pattern 
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recognition methods be employed to demonstrate the similarities and differences and to 

visualize some patterns in the data. Two different data analytic pipelines were employed 

to ensure confidence of the profiling results, one is the in-house methodology developed 

by Morgan et al.32 and the other is a commercial BioNumerics software (www.applied-

maths.com).  

 PCA analysis using Morgan et al. methodology distinguished the breast cancer 

cell lines into groups based whether they were metastatic, non-metastatic or non 

cancerous. The clustering was performed for two groups at a time where the samples 

were always classified with 100% accuracy. However, this pipeline could not 

demonstrate clustering of more than two groups and therefore was inadequate for 

differentiation of spectra of the six breast cancer cell lines in one analysis. BioNumerics 

on the other hand permitted hierarchical clustering and PCA of all the six cell lines, 

where distinct groups were observed for MDA-MB468 and MCF-10A. A co-cluster of 

SKBR-3 and T47-D showed that there are more similar than dissimilar features between 

these two. These cell lines have similar clinicopathological features so they are likely to 

co-cluster. A co-cluster of MCF-7 and MDA-MB231 was least expected since these have 

different clinicopathological properties. Although the unsupervised clustering methods 

demonstrated the potential to distinguish breast cancer cell line, the discrimination could 

have been improved by employment of supervised clustering that uses only a 

discriminatory set of variables (proteins) to cluster the samples. 

http://www.applied-maths.com/
http://www.applied-maths.com/
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CHAPTER 3 

AFFINITY ENRICHMENT AND LC-MS/MS ANALYSES OF O-LINKED-N-

ACETYLGLUCOSAMINE PROTEOME 

3.1 ABSTRACT 

Investigation of O-GlcNAc epithelial-mesenchymal transition (EMT) proteomics is 

critical in understanding how aberrant O-GlcNAc PTM promotes cancer invasion and 

metastasis, as well as in the identification of early stage therapeutic targets. Until now the 

role of O-GlcNAc PTM in TGF--induced EMT is unknown. To explore the O-GlcNAc 

EMT proteome, we developed a cleavable azide-reactive dibenzocyclooctyne-disulphide 

agarose-based beaded resin by coupling DBCO-SS-NHS ester to two commercial 

available NH2-terminated resins. Prior to utilization of these affinity probes, robust bead 

washing was established to minimize the non-specific protein binding to affinity resins. 

Protein extracts from GalNAz-fed, metabolically labeled cells were conjugated onto the 

affinity resin via SPAAC for 18 h at 37 ºC. Using NIH3T3, a cell line that has been 

previously GalNAz labeled, the affinity-enriched proteins were detected by SDS-PAGE 

and in-gel fluorescence scanning. The GalNAz labeling and affinity purification were 

repeated on NMuMG cells undergoing EMT. The five samples tested were as follows: 1) 

DBCO-beads+GalNAz+TGF-; 2) beads+GalNAz+TGF-; 3) DBCO-beads+GalNAz-

TGF-; 4) beads+GalNAz-TGF-; and 5) DBCO-beads-GalNAz-TGF-, where samples 

2, 4 and 5 were negative affinity controls, and 1 and 2 were TGF- induced. Following 
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affinity enrichment and bead washing the non-O-GlcNAc peptides were obtained by 

tryptic digestion and analyzed by LC-MS/MS with CID fragmentation. Using the intact 

and fragmented peptide ion profiles, label-free quantification and identification were 

performed with MaxQuant and Andromeda search engine. Based on the MaxQuant-

generated LFQ intensities, biochemical enrichment factor of each protein was calculated 

and employed in filtering nonspecific binding proteins. Out of 196 proteins identified, 

125 constituted the affinity enriched proteins. 75% of these have been identified among 

O-GlcNAc affinity enrichment samples in other studies. Bioinformatics gene ontology 

analyses were performed using Ingenuity Pathway Analysis to determine cellular 

localization, functions and processes represented by the data. In silico protein-protein 

interactions revealed a regulatory network for metastasis, and cell cycle and proliferation, 

among the highly represented cellular processes. In silico canonical pathways analysis 

revealed glycolysis among the highly represented metabolic pathways and several 

signaling pathways that cooperate with TGF-/SMAD signaling in accomplishing EMT. 

A metastatic regulatory network that features core regulators β-Catenin and cyclin-D1 

both of which are regulated by OGT has led us to hypothesize that TGF- signaling 

cooperates with O-GlcNAc signaling in promoting EMT, invasion and metastasis, 

pending validation and O-GlcNAc site-mapping. 

3.2 INTRODUCTION 

Cancer metastasis is the major cause of high breast cancer mortality1-2. Therefore 

understanding of molecular mechanisms leading to cancer cell invasion and metastasis is 

very essential. Epithelial-Mesenchymal Transition (EMT), a process by which cells lose 

their epithelial features and acquire mesenchymal and migratory behavior, is known to 
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initiate invasion leading to metastasis3. In addition, EMT supports cancer phenotypes by 

promoting angiogenesis, immune response escape, and stem cell properties4. Targeting 

molecular events of EMT has been perceived to be helpful in mitigating propagation of 

malignancies. Research on proteomic studies of EMT is aimed at identifying molecular 

signatures that allow detection of the transition from normal mammary epithelial cells to 

malignant invasive cells5. Such signatures are critical in the development of diagnostic, 

therapeutic and preventative strategies against breast cancers5-6. While proteomic 

investigations provide platform for protein-level probing of gene expression as compared 

to DNA-, and RNA-based studies, it is envisaged that study on functional proteomics 

involving PTMs can generate newer and more useful insights on complex diseases than 

other molecular profiling approaches have so far elucidated7-8.  

Recently O-GlcNAc PTM has been considered as a link between abnormal 

glucose metabolism and metastasis9. However, its role in TGF--induced EMT is not 

fully understood. In cancer cells, alteration in glucose metabolism leads to aberrant 

glycosylation and plays a role in disease progression10. Due to “Warburg effect” 

elevation of glucose uptake resulting from de-regulation of glucose metabolism 

upregulates glucose flux through HBP leading to increase in UDP-GlcNAc11, the 

nucleotide-sugar substrate for enzymatic tagging of target proteins with O-GlcNAc. 

Increase in UPD-GlcNAc stimulates the expression and activity of the tagging enzyme, 

uridine diphospho-N-acetylglucosamine: polypeptide beta-N-

acetylglucosaminyltransferase (O-GlcNAc Transferase [OGT]) which will then 

glycosylate target nucleocytoplasmic proteins to modulate activity, localization, stability 

and interactions of O-GlcNAc-regulated proteins, mainly transcription regulators10, 12-14. 
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Upregulation of O-GlcNAcylation in this manner modulates the expression of target 

proteins to favor cancer growth and metastasis9.  

 The role of O-GlcNAcylation on protein function as well as on cancer progression 

has been reported. Reference to O-GlcNAcylation of Snail1, at protein level, OGT 

overexpression resulting from hyperglycaemia, increased the amount of Snail1 protein 

and enhanced the O-GlcNAc modification without changing the Snail mRNA levels10. 

Together with Snail1, several other cellular proteins were also O-GlcNAcylated as many 

bands were resolved on SDS-PAGE of lectin-based sWGA-affinity purified total cell 

lysates. OGT overexpression stabilized O-GlcNAcylated Snail1 through inhibition of 

phosphorylation-mediated ubiquitination resulting in Snail1 transcriptional repression of 

E-cadherin. In a different study on O-GlcNAcylation in breast tumors, at cellular and 

tissue level, OGT overexpression was associated with elevated global O-GlcNAcylation, 

E-cadherin downregulation, and invasion and metastasis both in vitro and in vivo, as 

shown by immunohistochemical analyses9. Based on these observations, it is likely that 

the elevated OGT expression and O-GlcNAcylation cooperate with the known signaling 

cascades in promoting invasion and metastasis.  

 In TGF--induced EMT, the mediators of the TGF- induced signal, namely, the 

Smad proteins are weak in binding DNA1, 15. They only bind strongly to the promoters of 

target genes upon interacting with the transcription regulators, some of which are O-

GlcNAc regulated. By interacting with the Smads to form EMT-promoting Smad 

complexes, these O-GlcNAc-regulated transcription cofactors facilitate recognition and 

binding to target promoter elements, ensure nuclear retention and prevent degradation of 

the Smads16. Many studies have shown that transcription cofactors of the Smads 
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including Hmga-2, c-Myc, Snail1, and Foxm1, among others, are upregulated in cancers 

synergistically with O-GlcNAcylation and they may be O-GlcNAcylated14, 16-18. 

However, only the O-GlcNAc modifications of Snail1 and c-Myc have been 

characterized in relation to phosphorylation, and the interplay between these two 

modifications in controlling breast cancer progression has been recognized10, 19. The 

oncogenic protein Foxm1 is upregulated in high O-GlcNAc levels but its O-GlcNAc site 

has not been established14, 20. The impact of O-GlcNAc, if any, at specific sites on these 

transcription regulators and other key proteins in the context of TGF--induced EMT is 

still unknown. Since a combination of affinity enrichment and mass spectrometry is 

widely acceptable as a suitable approach for identification of O-GlcNAc-modified 

proteins and mapping the site of modification to understand the role of O-GlcNAc 

modification in protein function11, it was hereby applied in investigating the O-GlcNAc-

modified proteins from cells undergoing EMT. 

In previous studies proteomic characterization of cells undergoing EMT has 

revealed protein expression changes reflecting cellular reprogramming regardless of the 

source of the EMT-inducing signal. Biarc and coworkers have performed targeted 

proteomics of mutant K-Rasv12-, and TGF--induced MCF-10A cells8. Proteomic profiles 

from both treatments reflected EMT features including upregulation of cytoskeletal 

proteins, translation and degradation machineries, as well as metabolic enzymes, and 

down-regulation of cell-cell adhesion proteins. Their study, however, did not demonstrate 

the role of PTMs such as, in providing the link between metabolic changes and EMT, 

specifically in revealing which proteins during EMT might be modulated by abnormal 

metabolic regulation elicited by TGF-. Examination of the O-GlcNAc proteome in 
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discovery LC-MS/MS has a potential to reveal a wealth of information pertaining to new 

candidate disease biomarkers, as well as insights on regulation of protein function by O-

GlcNAc PTM in the context of EMT and metastasis.  

To explore the O-GlcNAc molecular signatures in TGF--induced EMT, we 

developed a cleavable “click”-chemistry-based affinity enrichment probe, azide-reactive 

DBCO-SS-resin. Of all the O-GlcNAc enrichment strategies including immunoaffinity-

based21, WGA lectin-based22-23, chemoenzymatic biotin/avidin-based24-25, azide-reactive 

cyclooctyne resin (ARCO)-based26, and resin-alkyne-based27, our affinity probe is 

ARCO-resin-based. However, unlike the ARCO-resin that was suited for O-GlcNAc-

modified peptides, our probe is aimed at enrichment of intact proteins following the 

strategy employed for the commercial resin-alkyne (Click-iT Protein Enrichment kit, 

Invitrogen)27. In that strategy, the GlcNAz modified intact cellular proteins were captured 

via CuAAC onto the resin-alkyne, thus as an alternative, we propose a SPAAC-based 

strategy in which the GlcNAz modified proteins are enriched by capture onto DBCO-SS-

resin probe and released from the resin by reductive cleavage28. Previous studies have 

shown that the ARCO-resin that selectively enriches proteins by SPAAC is more suited 

to peptides since it avoids the toxic effect of Cu (I)26. Extension of the SPAAC-based 

bead conjugation to intact proteins allows expansion of the utility of such probes. 

Temming et al. briefly characterized a “capture and release” bicyclononyne-resin 

possessing a hydrazine-cleavable levulinoyl linker29. Our cleavable DBCO-SS-resin 

probe is hereby characterized and applied in EMT O-GlcNAc proteomics.  

In this chapter affinity enrichment of O-GlcNAc proteins from NMuMG cell line 

using the approach of metabolic labeling of cellular O-GlcNAc PTM with azido-sugar 
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and ligation of azido-sugar labeled proteins to resin-strained-alkyne by SPAAC is 

described. The overall analytical workflow involves metabolic labeling, affinity O-

GlcNAc protein enrichment and shotgun proteomics (Figure 3.1). Prior to enrichment, 

metabolic labeling of O-GlcNAc proteins with azido-GalNAc was confirmed by chemo-

selective staining with alkyne-conjugated fluorescein dyes and imaging by fluorescence 

microscopy. The stability of the O-GlcNAz PTM in cell lysates was confirmed by a 

similar dye-labeling strategy, and the proteins were resolved using 1D SDS-PAGE and 

visualized by in-gel fluorescence scanning. The resin strained-cleavable-alkyne-

conjugated probe was prepared following the reaction scheme on Figure 3.2, by coupling 

dibenzo-cyclooctyne-disulphide-N-hydroxysuccinimide ester to epoxy-activated amine-

terminated sepharose or ω-aminohexyl agarose. The efficiency of coupling was evaluated 

by UV-Vis spectrophotometry while the reactivity, not the reaction kinetics, of the 

modified bead probe was tested by MALDI-TOF MS analysis of the reduced and cleaved 

glycoconjugate products. To detect O-GlcNAc proteins during TGF-1-induced EMT, 

azido-GlcNAc-tagged proteins in pre-fractionated protein extracts from induced and non-

induced cells were enriched via SPAAC onto the alkyne-modified bead probe. The 

selectivity of the enrichment strategy was assessed through evaluation of the bead 

washing protocol to ensure that non-specific binding is minimized. The selectivity is 

further demonstrated by biochemical enrichment factors of the identified proteins. The 

specificity of the enrichment strategy was assessed in two ways; 1) by detection of 

affinity enriched proteins from metabolically labeled NIH3T3 cells, and 2) by LC-

MS/MS quantification and identification of enriched O-GlcNAz-proteins from on-resin 

tryptic digests of metabolically labeled NMuMG cells undergoing EMT. These peptides 
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Figure 3.1 Schematic representation of the combined Cu-free Click chemistry-based O-

GlcNAc affinity enrichment and shotgun proteomics approach for O-GlcNAc LC-

MS/MS glycoproteomic profiling. 
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Figure 3.2 Reaction scheme for the O-GlcNAc glycoproteomic profiling showing the 

preparation of the “click-able” and cleavable bead probe and its application in affinity 

enrichment of O-GlcNAc PTM. Two different raw bead resins, namely; EAH sepharose 

4B and -aminohexyl agarose were used. 
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were not directly attached to the beads and were analyzed as the first fraction. The second 

fraction consisted of the O-GlcNAz-modified peptides that were directly linked to the 

beads by the triazolyl linkage and these were eluted via reduction of the disulphide linker 

using DTT and saved for O-GlcNAc site-mapping. Analysis of this fraction required a 

different kind of fragmentation method, electron transfer dissociation, and due to time not 

permitting, the O-GlcNAc site-mapping was not accomplished in this study. However, 

data from O-GlcNAc proteomic profiling based on the tryptic digests alone revealed 

EMT and O-GlcNAc characterization that underscores findings from many previous 

studies. 

3.3 EXPERIMENTAL SECTION 

3.3.1 Materials   

-Aminohexyl agarose and dibenzocyclooctyne-disulphide-N-hydroxysuccinimide ester 

were purchased from Sigma and EAH Sepharose 4B came from GE Healthcare. FITC-

alkyne, DBCO-naphthalimide, peracetylated N-azidoacetylgalactosamine, peracetylated 

N-acetylgalactosamine and 3-azido-7-hydroxycoumarin were synthesized in-house. 

Click-iT L- homopropargylglycine, was purchased from Gibco Invitrogen. NMuMG and 

NIH3T3 were purchased from ATCC (Manassas, VA). DBCO-Fluorescein was 

purchased from Click Chemistry Tools (Scottsdale, AZ). Cell scraper was obtained from 

BioTang Inc. (Lexington, MA). Benzonase and sequencing trypsin were purchased from 

Promega (Madison, WI). Protease and phosphatase inhibitor and immunoblotting 

reagents were purchased from Thermo Fisher Scientific (Grand Island, NY). SDS-PAGE 

materials and RNA extraction kit were obtained from Biorad (Hercules, CA). 
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Transforming Growth Factor beta-1 was purchased from R&D Systems (McKinley, NE). 

Anti-Snail1 antibody was purchased from Cell Signaling (Danvers, MA). All other 

chemicals were purchased from Sigma (St. Louis, MO). 

3.3.2 Coupling of DBCO-SS-NHS Linker to -Aminohexyl Agarose and EAH 

Sepharose 4B Resins 

3.3.2.1 Synthesis of the Strained Alkyne-resin and Evaluation of the Efficiency of 

Coupling 

Three 250 L (1.75-3 mol active amino groups) aliquots of bead slurry were placed in 

empty spin columns. Synthesis of the bead probe was done through coupling of DBCO-

SS-NHS to commercial beads following the manufacturer’s instructions, where available. 

Prior to coupling, the beads were prepared by washing 1× with acidified water (pH 4.7) 

and 1× with 0.5 M NaCl. Next, the beads were rinsed 2× with coupling buffer (50% 

dioxane in acidified water, pH 4.7). The wash flow-throughs were collected by 

centrifugation (200 × g, 30 s) to obtain drained bead matrix. 20 mM solution containing 

4.18 mol DBCO-SS-NHS was added to each of the three drained bead samples and 

coupling was allowed at room temperature for 24 h on an end-over-end rotator. After 

coupling the beads were washed 4 times with coupling buffer, 1×  with acidified water 

and 1× with 0.5 M NaCl. The absorbance of the DBCO linker in the series of wash flow-

throughs were determined by UV-Vis spectrophotometry at a wavelength of 302 nm. 

Thus, the amount of DBCO linker retained on the beads was estimated. To facilitate the 

estimation, a standard curve was prepared from 100-fold diluted aliquots of the starting  
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Figure 3.3 Reaction scheme for evaluation of the “click-able” and cleavable bead probe 

using UV-vis spectrophotometry and MALDI-TOF MS.
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solution. The first four wash flow-through samples used were blanked with coupling 

buffer. 

 Initially coupling of DBCO-SS-NHS to -aminohexyl agarose was performed 

using different conditions, none of which were from the manufacturer as these were not 

available. Coupling was done with excess linker (equivalent to 2× mol of active amino 

groups in beads) in 70% DMSO/30% PBS with incubation for 2 h on end-over-end 

rotator.3.3.2.2 Determination of Suitable Conditions for Cleavage of Bead-conjugated 

Product 

The reductive cleavage elution buffer consisting of 20 mM DTT, 1 M Urea and 50 mM 

NH4HCO3 was adopted from Howden et al. who used it for elution of biotin-avidin 

enriched proteins28. The cleavage conditions were initially determined for the -

aminohexyl agarose but used later with the EAH Sepharose. After coupling of DBCO-

SS-NHS linker to resin beads, 20 L aliquots of slurry of modified and unmodified beads 

were placed in 1.5 mL Eppendorf tubes. The beads were briefly centrifuged (200 × g, 30 

s) and the supernatant was removed from the top of the slurry. The beads were rinsed 

with water, which was removed too. Next the modified and unmodified beads were 

incubated with DTT in different solutions: 1) 40 mM DTT in 60% DMSO containing 1 

M Urea and 50 mM NH4HCO3; 2) 40 mM DTT in 0% DMSO containing 1 M Urea and 

50 mM NH4HCO3; 3) 40 mM DTT in 60% DMSO only. The samples were kept in a 

shaker at 37ºC for 1 hr. After the first fraction of eluents was collected, fresh DTT 

solution was added and the beads were incubated again to get the second fraction. The 

cleaved DBCO conjugate was detected by UV-Vis spectrophotometry. 
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3.3.2.3 Testing Whether the Beaded Resin Probe is Azide-reactive 

MALDI-TOF MS analysis of the eluted GalNAz conjugate was performed according to 

the procedure on MALDI analysis of starch hydrolysis by Grant et al30. After coupling of 

DBCO-SS-NHS linker to resin beads, 50 L aliquots of slurry of modified and 

unmodified beads were placed in 1.5 mL eppendorf tubes. The beads were rinsed 2× with 

50% dioxane (EAH Sepharose) or 50% DMSO (-aminohexyl agarose) and supernatant 

was removed by pipetting from the top of the slurry. Next, the beads were incubated with 

10 mM AC4GalNAz (50 L) in 50% Dioxane or 50% DMSO for 24 h on a shaker at 

37ºC for SPAAC conjugation of AC4GalNAz to alkyne on beads. The SPAAC conditions 

used here were based on the on-bead SPAAC kinetics reported in Temming et al29. After 

SPAAC the supernatant was removed and beads were washed 5× with the coupling 

buffer to get rid of unbound AC4GalNAz. Subsequently the beads were incubated with 40 

mM DTT in coupling buffer for 1 h at 37ºC for reductive cleavage of the covalently 

bound AC4GalNAz. The eluent (cleavage GalNAz conjugate = m/z 817.4) was analyzed 

by MALDI-TOF MS. A mixture of 2 L eluent, 100 M AC4GalNAc and 10 mM NaCl 

in 50% dioxane or DMSO was made. An aliquot of this mixture was mixed 1:1 with 

DHB matrix solution, spotted on the MALDI target plate and air-dried, before analysis. 

External calibration was done using AC4GalNAc ([M+Na]+ = 411.547 Da). Spectra were 

acquired from 200 shots in positive linear mode in the m/z range 200-2000. 

3.3.3 Cell Culture 

NIH3T3 cells were cultured in high-glucose DMEM media (Hyclone, ThermoScientific) 

supplemented with 10% FCS (Hyclone, ThermoScientific). NMuMG cells were cultured 
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in low-glucose DMEM media containing 10% FBS and 10 g/mL insulin. All cells were 

seeded at a density of 1 million cells in 10-cm culture plates and were maintained in a 

humidified incubator at 37ºC and 5.0% CO2. 

3.3.4 Metabolic Labeling with AC4GalNAz 

After 24 h and at about 70% confluence, all media were replaced with low-glucose 

DMEM containing 200 M AC4GalNAz (200 mM stock in DMSO) of DMSO vehicle, 

and the labeling was done for 16 h. NMuMG cells were induced with 100 pM TGF-1 or 

1% BSA in 4 mM HCl vehicle and 200 M AC4GalNAz was added 8 h after induction 

with TGF-1 so that the duration for induction was 24 h and that for AC4GalNAz 

labeling was 16 h. 

3.3.5 Metabolic Labeling and Pulse-Chase with HPG 

Double and single metabolic labeling and pulse-chase with HPG were carried out 

according to the procedures in Duan et al.31-32 Beatty et al.33 and Liu et al.34 Briefly two 

12-well plates were seeded with 6×104 cells per well on sterile microscope cover slips 

immersed in high-glucose DMEM supplemented with 10% FBS, 1% 

penicillin/streptomycin, and 10 g/mL insulin, and containing 100 M AC4GalNAz or 

DMSO vehicle. Cells were cultured for 48 h and in the last 6½ h cells were starved for 30 

min, pulsed with HPG for 4 h and chased with L-Methionine for 2 h before fixing and 

staining.  
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3.3.6 Fluorescence Visualization of GalNAz-tagged Proteins in Fixed NIH3T3 and 

NMuMG Cells 

Cells were seeded in 12-well plates on sterile microscope cover slips disinfected by 

immersion in 70% ethanol and UV irradiation for 20 min. After 16 h of AC4GalNAz 

labeling, wells were washed 3 times with warm PBS, and then fixed with 4% 

paraformaldehyde in PBS for 10 min. Cells were permeabilized with 0.1% Triton X-100 

in PBS for 30 min, rinsed with PBS and blocked with 0.1 M Glycine in PBS for 30 min. 

Dye-labeling was carried out with 10 M DBCO-fluorescein or FITC-alkyne for 30 min. 

For double metabolic labeling, cells were stained with multiple stains, first, DBCO-

fluorescein or FITC-alkyne for the GalNAz tag, then Azide-42 for HPG tag, and then 

DAPI or propidium iodide for nuclear DNA. After dye-labeling the wells were washed 

four times with a wash solution containing 1% Tween 20 and 0.5 mM EDTA in PBS, and 

once with ddH2O.  

3.3.7 Preparation of Cellular Protein Extract for Immunoblotting  

Cellular protein extracts were prepared according to the procedure by Zaro et al. 

modified. Cells were resuspended in hypotonic buffer (10 mM HEPES, pH 8.0, 1.5 mM 

MgCl2, 10 mM KCl, 1X protease and phosphatase inhibitor), and disrupted with a 

homogenizer. The samples were incubated on ice for 30 min for lysis to be completed. 

Crude nuclei were pelleted by centrifugation (500 × g, 5 min). To prepare cytoplasmic 

extracts, this nuclei- depleted supernatant was centrifuged at 20,000 × g to pellet 

insoluble (i.e. membrane and small organelle) material and the resulting supernatant was 

saved. To prepare nuclear extracts, the crude nuclear pellet was resuspended in sucrose 
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Figure 3.4 Reaction scheme for bio-orthogonal dye labeling of azido- and alkyne-

modified proteins employing a given panel of fluorophores A-D. 
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buffer A (250 mM sucrose, 10 mM MgCl2), layered over an equal volume of sucrose 

buffer B (880 mM sucrose, 0.5 mM MgCl2) and pelleted by centrifugation (2,800 × g, 10 

min). This highly purified nuclear pellet was resuspended in 1% Triton X-100, 300 mM 

NaCl, 20 mM Tris pH 7.4. All samples were sonicated and cleared by centrifugation 

(10,000 × g, 10 min). 

3.3.8 Western Blotting 

Alternatively, cells were lysed in RIPA buffer with protease and phosphatase inhibitors, 

and then prepared and immunoblotted according to the procedure by Lamouille et al. 

modified35. Protein concentration was determined using a modified Bradford protein 

assay (Pierce, ThermoScientific). 20 mg of protein was separated by SDS-PAGE and 

transferred to nitrocellulose membranes which were blocked with 5% dry milk TBST for 

1 h before overnight incubation with primary antibody diluted in 3% BSA in TBST. 

HRP-conjugated secondary antibody (Jackson ImmunoResearch Laboratories) was 

applied and detected by ECL (Pierce, ThermoScientific) and BioMax film (Kodak). 

3.3.9 RNA Extraction and Reverse-Transcription Quantitative Polymerase Chain 

Reaction (RT-qPCR) 

RT-qPCR was performed following the procedure in Saha et al. Briefly total RNA was 

extracted from NMuMG cells induced with 0, 2 and 5 ng/L TGF-1 after 2 days of 

culture using RNeasy mini purification kit (Qiagen) and subsequently reverse-transcribed 

with qScript cDNA synthesis kit (Quanta Bioscience, inc.). RT-qPCR was carried out for 

45 cycles of PCR (95 ºC for 15 s, 58 ºC for 15 s and 72 ºC for 30 s) with iQ5 SYBR 

Green Supermix (Biorad) using the Snai1 and Gapdh primers shown in Table 2. The 
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reaction mixture of 25 L total volume included 200 nM of both forward and reverse 

primers (Integrated DNA Technologies, inc.) and the cDNA template at a final 

concentration of 0.25 ng/L. Data analysis was performed using 2-CT method for 

relative quantification. The samples were normalized to Gapdh as the internal control. 

The reaction was repeated using another batch of NMuMG samples. 

3.3.9 Preparation of Nonidet P-40 (NP-40)-Soluble Lysates for SDS-PAGE and In-gel 

Fluorescence Visualization 

Preparation of NP-40-soluble lysates was done following the method of Zaro et al. 

modified36. Briefly, after 16 h or labeling cells harvested in ice-cold PBS using cell 

scraper after washing plates with ice-cold PBS. The cell suspension was centrifuged at 

100 × g for 5 min at 4 ºC. The pellet was washed again in ice-cold PBS before re-

suspension in about 100 L 1% NP-40 lysis buffer containing 1 × protease and 

phosphatase inhibitor solution. Samples were incubated on ice for 30 min for cell lysis to 

be completed. Samples were then centrifuged at 10,000 × g for 10 min at 4 ºC. The pellet 

was discarded while supernatant was used for labeling of GalNAz-tagged proteins. Total 

protein in the supernatants of the GalNAz-labeled and control cell lysates was quantified 

by Bradford assay using BSA as standard.  

3.3.10 In-gel Fluorescence Visualization of GalNAz-tagged Proteins from NIH3T3 Cell 

Lysates 

A 200 L reaction mixture containing 1 mg/mL cell lysate protein in the presence of 100 

M DBCO-fluorescein or DBCO-naphthalimide dye was set up. Alternatively the 

amount of cell lysate protein was mixed with click chemistry reagents; 100 M FITC-
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alkyne, 1 mM ascorbic acid, 1 mM TBTA and 1 mM CuSO4.5H2O. Dye-labeling reaction 

was carried out at 10 ºC for 10 h. An additional condition of room temperature 1 h was 

included to find out the suitable conditions for dye labeling with DBCO-naphthalimide. 

When labeling was completed, 1 mL of ice-cold methanol was added and the mixtures 

placed at -80 ºC for 2 h to precipitate the proteins. The cold mixtures were centrifuged at 

10,000 × g for 10 min at 4 ºC. The supernatant was discarded and the pellet air-dried. The 

proteins were re-solubilized in 50 L of 4% SDS buffer [4% SDS, 150 mM NaCl and 50 

mM Tris, pH 7.4] in a bath sonicator. The samples were diluted accordingly and total 

protein quantified by Bradford assay, using BSA as standard. Samples were further 

diluted 2-fold by adding 50 L of 4 × SDS-free loading buffer containing 1.4% -

mercaptoethanol. 30 g protein of each sample was loaded onto gel for SDS-PAGE 

analysis. Prestained protein standards were used as weight markers while FITC-IgG was 

used as a positive for fluorescence.  

3.3.11 Optimization of Washing Protocol of the Beads to Remove Non-specifically 

Bound Proteins 

Different bead-washing conditions were tested to aid in establishing an optimized in-

house bead-washing method. In each test about 200 L bead slurry (-aminohexyl 

agarose, Sigma) was added to at least two empty spin columns (Pierce, Thermo 

Scientific). The beads were washed twice with PBS and once with the protein 

conjugation buffer. One tube was loaded with 2 mg of cell lysate protein and the other 

tube (control) was loaded with conjugation buffer without protein. Both tubes were 

incubated under SPAAC conditions and then washed according to the washing conditions 
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under test. The bead washing was evaluated by SDS-PAGE to check the protein content 

of the wash flow-throughs, the DTT-eluted fraction and the denatured beads. To a gel 

with 30 L well capacity was loaded a mixture of 15 L wash sample and 15 L SDS 

loading buffer containing 5% -mercaptoethanol. Prestained protein standards solution 

was loaded in weight markers’ lane.  

To two sets (A and B) of three empty spin columns each was added 400 L bead 

slurry (EAH Sepharose, GE Healthcare).  The bead bed was washed with acidified water, 

pH 4.7 and 0.5 M NaCl to prepare it for loading. The first tube of each set was loaded 

with 10 mg cell lysate protein, the second was loaded with 10 mg BSA while the third 

was loaded with same lysis buffer as was used for samples in the first and second tubes 

(0.01 × Urea buffer), but no protein. All tubes were incubated under SPAAC conditions 

(37 ºC for 24 h, on a shaker) to mimic coupling of GalNAz-tagged proteins to DBCO-

modified beads. At the end of incubation, the SPAAC supernatant was removed and 

beads in set A tubes were washed according the manufacturer’s protocol while beads in 

set B tubes were washed according to the in-house protocol. The bead-washing protocols 

were evaluated by measuring the amount of protein in DTT-eluted fraction (Bradford 

assay, with BSA as standard) and by SDS-PAGE profile of denatured beads. Before 

Bradford assay, the DTT eluents were dialyzed against 0.1M PBS, pH 7.4 overnight. 

3.3.12 Preparation of Cellular Protein Extract and Affinity Enrichment of Cellular O-

GlcNAc Proteins  

For analysis of affinity-enriched proteins using SDS-PAGE, azido-GalNAc-labeled and 

control, NIH3T3 cells were harvested as indicated above. 5 × 106 cells per sample were 
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lysed in 1% SDS/PBS buffer containing 1× protease inhibitor and benzonase. 800 L 

lysate was added to DBCO-SS-modified beads and incubated on a shaker under SPAAC 

conditions for the azido-labeled proteins to be conjugated to the beads. After SPAAC the 

beads were washed 3 times with alternate low and high pH SDS wash buffer, 5 times 

with urea/bicarbonate wash buffer, 5 times with 20% acetonitrile in H2O. For each wash 

the beads were incubated 5 min on shaker at 37 ºC. The washing procedure used here was 

applied before establishment for the in-house washing protocol. After washing, the 

conjugated proteins were eluted by incubation for 1 h at 37 oC in 40 mM DTT elution 

buffer. Elution was repeated to collect the 2nd fraction. A total of 200 L of the eluents 

was reduced and concentrated in a SpeedVac to 20 L.  

 For analysis of affinity-enriched protein using LC-MS/MS, Azido-GalNAc-

labeled and control, TGF-1-induced and non-induced cells (5-10 × 107) were harvested 

as indicated above. The cell extracts and protein samples were prepared according to 

procedures used in Hahne et al. and Boyce et al27, 37. The cell pellets were re-suspended 

in 500 L hypotonic lysis buffer [10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 1× 

protease and phosphatase inhibitor and 20 M PUGNAc] and cells were homogenized 

for 1 min using 3 out 5 power. The samples were incubated on ice for 30 min for lysis to 

be completed. Crude nuclei were pelleted by centrifugation (500 × g, 15 min, 4 ºC). The 

supernatant was used for fractional enrichment of Cytosolic extracts while the pellet was 

further processed for isolation of nuclear extracts. 

The 1-mL nuclei-depleted supernatant was transferred to 10-mL ultra-centrifuge 

tube and the volume was adjusted to about 9 mL using cold water. The samples were 
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centrifuged at 145,000 × g for 1 h at 4 ºC. The clarified supernatant was placed in a 4 mL 

chamber of a 15-mL MWCO (3K) centrifugal tube and centrifuged at 10,000 × g for 10 

min at 4 ºC. The retentate was re-suspended in 8M Urea buffer [8 M Urea, 100 mM Tris, 

pH 8, 4% CHAPS, 1 M NaCl, 1 × protease and phosphatase inhibitor solution]. 

 The pellet containing crude nuclei (obtained after homogenization) was re-

suspended in sucrose buffer A [250 mM sucrose, 10 mM MgCl2], layered onto sucrose 

buffer B [880 mM sucrose, 0.5 mM MgCl2] and centrifuged at 2800 × g for 10 min at 4 

ºC. The resultant pellet contained purified nuclei. The pellet was re-suspended in 

hypotonic lysis buffer supplemented with 0.1% SDS. The nuclei were lyses with a probe-

tip sonicator for 30 sec at the lowest speed. The nuclear proteins were precipitated using 

chloroform/methanol method and the precipitate was re-solubilized in 8M Urea lysis 

buffer. The nuclear extracts were mixed with the cytosolic extract to create a sample from 

which O-GlcNAc proteins could be ‘fished out’. The concentration of protein in this 

sample was determined by Bradford assay using BSA as standard. 

Each of the five 1 mg protein samples was reduced using 10 mM DTT at 30 ºC 

for 1 h and alkylated using 50 mM iodoacetamide at 37 ºC for 1 h in the dark. The protein 

solutions were centrifuged in MWCO (3K) spin columns to remove DTT. The retentates 

were suspended in water and loaded to the respective bead samples. Samples were 

incubated on a shaker at 37 ºC for 24 h to allow conjugation of Azido-GlcNAc proteins to 

the beads by SPAAC. After SPAAC, the supernatant was removed by centrifugation at 

200 × g for 1 min at room temperature. All the bead samples were washed according the 

manufacturer’s protocol using 4 cycles of alternate solutions of high and low pH. These 

solutions were 0.1 M Sodium acetate buffer, pH 4 containing 0.5 M NaCl and 0.1 M Tris 
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buffer, pH 8 containing 0.5 M NaCl. The beads were next rinsed with acidified water, pH 

4.7 before incubation with 20 ng/L Trypsin for about 16 h at 37 ºC. The fraction of 

peptides was collected by centrifugation. The beads were rinsed with acidified water and 

the rinses were pooled together with their respective fractions. Before DTT elution, bead 

washing was repeated following the 4 cycles of alternate solutions of high and low pH. 

After rinsing with acidified water, the beads were incubated with 50 mM DTT in 1 M 

urea and 50 mM NH4HCO3. The eluent was collected by centrifugation. The beads were 

rinsed with elution buffer and the rinses were pooled together with their respective 

fractions. All peptide samples were desalted using iSEP tips. The eluents obtained were 

concentrated by vacuum drying in a SpeedVac, and re-diluted with 0.1% formic acid to 

about 10 L. 1 L aliquots of the eluents were mixed with CHCA matrix and analyzed 

by MALDI-TOF MS to ensure presence of peptide before LC-MS/MS analysis.  

3.3.13 LC-MS/MS Analyses 

Mass spectrometry was performed on an LTQ Orbitrap Velos mass spectrometer 

(Thermo Fisher Scientific, Germany) connected to a nanoLC Ultra 1D+ liquid 

chromatrography system (Dionex,) using both pre-column and analytical column packed 

with ReproSil-Pur C18 (New Objective, Germany). The mass spectrometer was equipped 

with a nanoelectrospray ion source (Pico Chip,), and the electrospray voltage was applied 

via a liquid junction. All measurements were performed in positive ion mode. Intact 

peptide mass spectra were acquired at a resolution of 7500 at a normal mass range, and 

an automatic gain control target value of 106, followed by fragmentation of the most 

intense ions by collision-induced dissociation. CID was performed in the FTMS for up to 

8 MS/MS (4 h gradient) per full scan with 35% normalized collision energy and an AGC 
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target value of 5000. Both full scans and tandem mass spectra were acquired in profile 

mode. Singly charged ions and ions without assigned charge state were excluded from 

fragmentation, and fragmented precursor ions were dynamically excluded (4 h gradient, 

30 s). Internal calibration was performed using Pierce LTQ Velos ESI positive ion 

calibration solution (Pierce,). The raw MS1 and MS2 spectra were generated using 

Proteome Discoverer software (Thermo Fisher Scientific) and saved as .RAW files. 

Intensity-based label-free quantification and protein identification from on-resin 

digestion experiments were achieved with the MaxQuant computational proteomics 

platform and its integrated search engine, Andromeda (Max Planck Institute of 

Biochemistry, Martinsried, Germany). The .RAW files were loaded into MaxQuant 

version 1.2.5.6 interface where detected features were preprocessed through alignment of 

the retention times and m/z across samples and recalibration of precursor ion peak 

intensity outputted as LFQ intensity. Andromeda automatically searched the resulting 

peak lists of precursor and fragment ions against Mouse Fasta database (UniProtKB) 

using search parameters that included a precursor tolerance of 2 ppm and a fragment 

tolerance of 0.5 Da for CID spectra. Enzyme specificity was set to trypsin, and up to 2 

missed cleavage sites were allowed. The variable modifications allowed were oxidation 

of Met and phosphorylation of Ser and Thr while the fixed modification was 

carbamidomethylation of Cys. Tables of detailed results showing protein identities and 

search parameters, mass spectrometric parameters, peptide sequences and their LFQ 

quantities were automatically generated. 
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3.3.14 Data Analysis 

Prior to data analysis, contaminants were discarded from the protein list if identified as 

trypsin or if they had no gene name. The biochemical O-GlcNAc protein enrichment 

factors of the proteins were determined based on label-free quantification following the 

procedures by Hahne et al27. Briefly, the biochemical enrichment factor of a given 

protein was calculated as the ratio of its LFQ intensity in the O-GlcNaz-labeled sample 

compared to that in the control (unlabeled) sample. The LFQ intensity of each protein 

represents the summed intensities of unique peptides including the razor signal. In the 

case of missing values, where a protein was present in either the labeled or unlabeled and 

not in the other, 3000 was used as the smallest value to avoid zero and infinite ratios. The 

biochemical enrichment factors were then converted to Log2 ratios. All proteins with log2 

enrichment factor <2 were considered non-specifically bound since they were found in 

the unfunctionalized beads, hence they were discarded. The list of bead-enriched O-

GlcNAc proteins was subjected to downstream bioinformatics analysis to understand the 

protein expression changes in our system and the relevance of these changes to EMT and 

metastasis. 

 Gene Ontology enrichment analysis was performed using the Ingenuity Pathway 

Analysis, proprietary software that maps experimental data to the Ingenuity Knowledge 

Base and provides four basic outputs; canonical pathways enriched in the data, biological 

functions and diseases overrepresented in the data, plausible molecular networks showing 

molecular interactions, as well as upstream regulators that might explain changes 

observed in the data. As parameters for the analyses, settings were made to explore direct 

and indirect relationships among proteins/genes in our data reference to mouse mammary 
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gland or breast cancer cell lines. The threshold and level of significance was set to p < 

0.05. Fisher’s Exact Test p-value was used to demonstrate significant enrichment or 

overrepresentation while activation and inhibition were predicted based on the z-score. 

Each of these two statistical measures was used depending on the analysis type. The 

Fisher’s Exact Test compares the similarity between proportions of significant molecules 

that map to a function/pathway in the experimental data to that of the molecules in the 

reference data that map randomly to a similar function/pathway. The Z-score determines 

the overall prediction direction based on expression values of individual proteins.  

3.4 RESULTS AND DISCUSSION 

A SPAAC click-chemistry-based strategy for affinity enrichment and identification of 

proteins modified by the post-translational O-GlcNAc glycosylation has been described. 

The enrichment scheme is summarized in Figure 3.1. The present strategy was adopted 

from a CuAAC click-chemistry-based affinity enrichment of O-GlcNaz-modified 

proteins onto resin-alkyne bead probe, developed and commercialized by Invitrogen27. 

Application of the commercial resin-alkyne in large-scale enrichment of HEK293 cellular 

O-GlcNaz-modified proteins has been demonstrated. In comparison, our strained-

cleavable alkyne was prepared in-house by coupling DBCO-SS-NHS ester to amine-

terminated Sepharose beads via amidation reaction. The efficiency of coupling and the 

azide-reactivity of the strained-cleavable-alkyne bead probe were evaluated by UV-Vis 

spectrophotometry and MALDI-TOF MS, respectively. Our enrichment strategy is 

unique in three ways: 1) coupling of O-GlcNAz-labeled proteins onto the bead probe 

occurs by SPAAC, 2) coupling takes place in an aqueous buffer (e.g. Urea/Tris buffer) 

with neither copper catalyst, reducing agent nor ligand, and 3) the bead probe possesses a 
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disulphide bridge for easy and reproducible elution of covalently coupled proteins under 

mild reducing conditions. Overall, several measures were taken to maintain selectivity 

toward O-GlcNAc purification. Many precautions including growing cells under low 

glucose conditions to reduce azide tagging of N-linked and O-linked mucin glycans, and 

ultracentrifugation of cell lysate to clear away potentially unspecific protein background, 

were borrowed from Zaro et al. and Hahne et al27, 38. Details of evaluations of the 

coupling reactions, metabolic-, and dye-labeling of fixed cells and cell lysates, bead 

washing optimization, enrichment, and identification of cellular O-GlcNAz-labeled 

proteins from a TGF-β1-induced EMT model, are described below. 

3.4.1 Evaluation of coupling DBCO-SS-NHS linker to -Aminohexyl agarose and EAH 

Sepharose 4B beads 

Preparation of strained-alkyne agarose beads was accomplished by coupling DBCO-SS-

NHS to EAH Sepharose 4B (GE Healthcare) and -aminohexyl agarose (Sigma) under 

their respective optimum conditions that are different between the two. The goal of the 

synthesis was to obtain 100% degree of modification so that the loading of the DBCO in 

the bead probe is the same as the loading of the NH2 groups in the unmodified bead resin. 

We also aimed at reproducing this high DOM. Given that the reaction stoichiometry is 

1:1, the UV-Vis measurements of uncoupled DBCO-SS-NHS washed from beads show 

that coupling was most efficient and repeatable when starting with excess amount of 

DBCO-SS-NHS ester since two molar equivalent of the ester to that of the reactive NH2 

groups on the beads resulted in 100% DOM. Furthermore, we used MALDI-TOF 

analysis to show that the bead probe is azide reactive. The MALDI spectra of DTT-eluent 

obtained after coupling azido-GalNAc to the modified bead probe revealed a [DBCO- 
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Figure 3.5 MALDI evaluation of the “click-able” and cleavable bead probe. The 

workflow shows the steps involved in the evaluation. Spectra A and B were obtained 

from the two modified resins used in this study showing that they were azide-reactive. 

The MALDI peak at m/z 817.4 for the reduced and cleaved O-GalNAc glycoconjugate 

was obtained with both Sepharose- and agarose-based bead probes. “a.u” = arbitrary 

intensity units. 
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SH-triazolyl-GalNAz + Na]+ cleavage product at m/z = 817.4 that was not obtained from 

the control bead. This product is indicative of the reactivity of the strained-alkyne agarose 

bead probe. The product was obtained from both EAH sepharose and -Aminohexyl 

agarose showing that the reactivity of the strained-alkyne agarose bead probe is the same 

regardless of the length of the linker and conditions that were involved in coupling alkyne 

to the bead. In addition, the azide-reactivity test makes it confident to use the strained-

alkyne agarose bead probe for affinity capture and enrichment of Azido-GlcNAc tagged 

proteins from complex biological samples of metabolically labeled cells.  

UV-Vis spectrophotometry was also employed in the determination of the suitable 

conditions for reductive cleavage of bead-bound linker (Table 3.1). It was estimated that 

~ 60% of the product was cleaved in the first fraction, obtained by incubation of modified 

beads with 40 mM DTT for 1 h at 37 ºC on a shaker, in the presence or absence of urea 

and NH4HCO3. This indicates that urea and NH4HCO3, the likely components of a DTT 

elution buffer for enriched proteins are not inhibitory to the reductive cleavage reaction. 

The remaining bead-bound linker was recovered in the second fraction. DTT, Urea and 

NH4HCO3 were components of a reductive cleavage elution buffer previously used in the 

selective isolation of enriched proteins from drugged immune cells in a quantitative non-

canonical amino acid tagging strategy. Presence of DMSO or 1,4-dioxane in the cleavage 

solution ensured solubility of the cleaved linker. However, these solvents will not be 

needed in elution of actual bead-bound proteins. 
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Table 3.1 Relative Amounts of DBCO Residues Cleaved from the DBCO-functionalized 

Resin under Different Conditions 

 

Elution (Reductive Cleavage) 

Conditions 

mol equivalents in 20 L (out of 200 

L total bead slurry) 

 1-h eluent 2-h eluent 

Modified beads+40mM DTT+60% 

DMSO+Urea+NH4HCO3 

0.063/0.1 63% 0.037/0.1 37%  

Modified beads+40mM DTT+60% 

DMSO 

0.066/0.1 66% 0.031/0.1 31% 

Modified beads+40mM DTT+0% 

DMSO+Urea+NH4HCO3 

0.038/0.1 38% 0.018/0.1 18% 

Control beads+40mM DTT+60% 

DMSO+Urea+NH4HCO3 

0 0% 0 0% 

Control beads+40mM DTT+0% 

DMSO+Urea+NH4HCO3 

0.0012/0.1 0.12% 0.0024 0.24% 
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Table 3.2 Evaluation of Coupling of DBCO-SS-NHS ester to EAH Sepharose resin 

Bead 

sample 

Starting 

linker 

Wash Flow-throughs 

(mol) 

Total mol 

in Washes 

Retained 

mol 

  A B C D   

1 4.180 0.288 0.103 0.179 0.0046 0.4401 3.780 

2 4.180 0.834 0.154 0.177 0.0043 1.0693 3.111 

3 4.180 0.369 0.129 0.0312 0.00647 0.536 3.640 
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3.4.2 Dye-labeling and fluorescence microscopy of Azido-O-GlcNAc-tagged proteins in 

fixed cells 

Metabolic labeling of proteomes in cells using an unnatural sugar and a non-canonical 

amino acid was followed with dye-labeling and fluorescence microscopy. The unnatural 

sugar, GalNAz, non-canonical amino acid, HPG and their bioorthogonal fluorophores 

have been successfully used elsewhere for labeling subsets of proteomes. As applied and 

recognized in Duan et al., fluorescence of fluorophores used in this study is quenched by 

the surrounding groups such as azide, and recovers upon formation of the triazole ring via 

CuAAC and SPAAC reactions31, 39-40. The fluorogenic nature ensures minimal 

background noise and high signal-to-noise ratio of detection41. Like many cell lines that 

have been metabolically labeled with GalNAz in previous studies, our results show that 

both NMuMG and NIH3T3 cells are amenable to metabolic labeling by azido-sugars and 

to dye-labeling that tags the azido moiety with fluorescent alkyne dyes via CuAAC or 

SPAAC36, 38, 42. In both cell cultures the green fluorescence arising from the FITC-alkyne- 

Tagging of azido-labeled proteins colocalized with nuclear staining (Figures 3.7 and 3.8). 

NMuMG was metabolically labeled with two bioorthogonal chemical reporters, azido-

GalNAc and homopropargylglycine (HPG) while NIH3T3 was labeled with one 

bioorthogonal chemical reporter, azido-GalNAc. HPG is an analogue of the amino acid 

Methionine and therefore tags the newly synthesized proteome, while Azido-GlcNAc 

tags the PTM following synthesis of the proteome34. The blue fluorescence stain for 

HPG-tagged proteins colocalized with green fluorescence stain azido-GlcNAc PTM and 

the red fluorescence stain for nuclei. 
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Figure 3.6 UV-Vis spectrophotometric evaluation of the coupling of the DBCO-SS-NHS 

ester to raw beads to produce the affinity bead probe. A) The workflow for the coupling 

and the UV-Vis profiles obtained with different ester concentrations are shown. B) The 

workflow for testing the elution conditions. The coupling was efficient when two 

equivalent of ester (in related to the terminal amine groups on the beads) was added. The 

characteristic absorbance profile was maintained by nearly all samples but seemed to 

change at continued washing due to dilution.  
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Figure 3.7 Fluorescence imaging of O-GlcNAc proteins (green) and newly synthesized 

proteins (blue) in double-metabolically-labeled fixed NMuMG cells. Nuclei were stained 

with propidium iodide (red). Scale bar = 10 m. 



www.manaraa.com

 

140 
 

 Fluorescence microscopy examination of dye-labeled HPG-tagged proteome and 

azido-GlcNAc tagged PTM in fixed cells confirmed the metabolic labeling and aided in 

the localization of the labeled proteome. In Figure 3.8 co-localization of DAPI with 

FITC-alkyne in azido-GalNAc-fed NIH3T3 cells and not in the control, showed the 

labeling of both nuclear proteome and its PTM. Cell population in the GalNAz-labeled 

cultures was found to be lower than that in the control. A similar observation was 

previously made by Duan et al32. In Figure 3.7, the three dye stains; namely, azido-

coumarin for HPG labeling, FITC-alkyne for azido-GalNAc labeling and propidium 

iodide for nuclear staining, all colocalized in multiply-stained NMuMG cells, showing 

azido-GlcNAc PTM of the newly synthesized proteome around the nucleocytoplasmic 

region. The exent of FITC-alkyne staining is smaller than that of azido-coumarin staining 

showing that not all the newly synthesized proteome has the O-GlcNAc PTM. The results 

demonstrate that NMuMG cells can be metabolically labeled with bioorthogonal 

chemical reporters to probe the O-GlcNAc PTM. Fluorescence Microscopy of dye-

labeled, HPG pulse-chased and azido-GlcNac tagged NMuMG cells was initially aimed 

at monitoring dynamic glycosylation in TGF-1-induced EMT similar to the work of Liu 

et al34. However, multiple staining seemed laborious and could not be easily reproduced, 

hence it was not applicable to cells undergoing EMT. To overcome this limitation cells 

undergoing EMT could have been followed by: 1) monitoring glycosylation of a target 

protein, or 2) studying changes in global glycosylation using dye-labeling of azido-

GlcNAc PTM in cell lysates.  
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Figure 3.8 Fluorescence imaging of O-GlcNAc proteins (green) in metabolically-labeled 

fixed NIH3T3 cells. Nuclei were stained with DAPI (blue). Scale bar = 10 m. 
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3.4.3 Fishing for Snail1 protein 

Snail protein might be the only key transcription factor and EMT marker whose O-

GlcNAc in relation to phosphorylation has been well studied. Park et al. showed that the 

presence of O-GlcNAc stabilizes Snail1 expression by inhibiting O-phosphorylation and 

that O-GlcNAc PTM on Snail1 occurs in various cell lines. In addition, these researchers 

demonstrated the presence of O-GlcNAc-modified Snail1 by immunoblotting following 

succinylated Wheat Germ Agglutinin-affinity purification from total cell lysates10. For 

this reason we were interested in using the strained-alkyne-cleavable bead probe to 

enrichfor Snail1 from metabolically labeled NMuMG cells using the O-GlcNAz as a 

handle for bead capture and enrichment, and to subsequently determine whether TGF-1-

induction of EMT has effect on how the O-GlcNAc PTM level changes. The goal was to 

resolve using 1D SDS-PAGE, bead-enriched proteins from TGF-1-induced cellular 

extracts and among them detect Snail1 using immunoblotting with anti-Snail1 antibody.  

 From preliminary work aimed at demonstrating presence of Snail1 without 

enrichment, we failed to detect Snail1 by immunoblotting, despite an attempt to follow a 

procedure that has been used previously35. On troubleshooting by analyzing positive 

control cell lysates, Snail1 was detected (Figure 3.9 C) showing that the procedure 

worked. In addition, Snail mRNAs were detected by qRT-PCR analysis of NMuMG 

TGF-β1-induced and control lysates using the same optimized forward and reverse 

primers for Snail and Gapdh (house-keeping gene) as were employed in Saha et al43. 

Snail mRNA levels were 3-5 fold higher in induced cells than in the control (Figure 

3.9B). The change in mRNA levels paralleled morphological change (Figure 3.9A) 

during TGF-β1 induction, and both seemed to be dose-dependent. It was surprising that  
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Figure 3.9 (A) Light microscope images showing changes in cell morphology between 

induced and control samples after 48 hours of TGF-β1-induced EMT. (B) Snail mRNA 

levels were higher in the induced sample than in the control. Both the cell morphology 

and mRNA changed in a dose-dependent manner. (C) Absence of Snail1 protein in both 

the induced and control samples.
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despite these changes associated with Snail expression, Snail protein could not be 

detected. Perhaps, the presence of Snail should have been monitored through following 

its localization using immunofluorescence microscopy prior to isolation from cellular 

extracts. Alternatively immunoprecipitation or succinylated Wheat Germ Agglutinin 

(sWGA)-affinity purification of Snail should have been carried out to facilitate detection 

as has been demonstrated in Park et al10. Failure to detect Snail paralleled inability to see 

consistent morphological changes characteristic to EMT from different batches of the 48-

h TGF-β1-induced cell cultures, a problem that could be attributed possibly to some 

inactive TGF-β1 protein aliquots among the refrigerated stock. As a consequence, the 

work on Snail1 was discontinued. 

3.4.4 Dye-labeling, SDS-PAGE and Fluorescent Scanning of Azido-O-GlcNAc-tagged 

Proteins 

Despite failure in detecting our target O-GlcNAc modified Snail, enrichment of global O-

GlcNAc proteins from the nucleocytoplasmic cellular fractions was pursued. We sought 

to find out if Azido-O-GlcNAc tagged proteins in cell lysates could be detected through 

dye-labeling via SPAAC since this has never been reported. We hypothesized that 

successful labeling of Azido-O-GlcNAc tagged proteins in cell lysates with DBCO-

functionalized dye via SPAAC would indicate that such proteins could be attached to any 

strained-alkyne in cell lysates regardless of whether the reaction environment is liquid 

phase or solid phase. Prior to bead-based enrichment, Azido-O-GlcNAc tagged proteins 

in cell lysates were directly labeled with an alkyne-conjugated fluorescein dye, and 

subsequently detected by in-gel fluorescence scanning. Dye-labeling here, not only 

confirmed the presence of azido functionality, but it proved that the azido group on 
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Figure 3.10 In-gel fluorescence detection of O-GlcNAz-modified proteins. Protein lysates 

from metabolically labeled cells were dye-labeled with (A) DBCO-fluorescein and (B) 

DBCO-naphthalimide and imaged with fluorescence scanner. Alongside dye-labeling, 

different conditions tested were (A) two different amounts of protein, 2 and 10 g; and 

(B) two dye-labeling conditions, room temperature for 2 h and 10 ºC for 10 h. Test 

loadings were made in lanes 5-8 of each gel. Lane 1 contains protein weight makers. 

Lanes 2-4 has FITC-IgG (positive control). Lanes 9-10 contains dye-unlabeled lysates 

(negative control). 
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proteins can be probed via SPAAC in cell lysates, even though previous studies 

exploitedonly the Cu-catalyzed click chemistry. Two dyes available in the lab, DBCO-

fluorescein and FITC-alkyne, were used for dye-labeling of proteins in cell lysates. The 

dyes were tested on NIH3T3, a cell line that has been previously labeled in other 

studies38. Labeling was done by incubation at 10 ºC for 10 h on a shaker. No signal was 

observed from FITC-alkyne-labeled samples in a preliminary experiment comparing dye-

labeling of proteins in lysates using FITC-alkyne and DBCO-fluorescein. The FITC-

alkyne might have been out dated and inactive and its use was therefore discontinued. 

Figure 3.10 A shows that GalNAz-tagged proteins were detected with a loading of 10 

compared to 2 g total protein using DBCO-fluorescein dye. The protein bands were 

however faint, as a result dye-labeling was repeated. To improve the signal obtained 

using DBCO-fluorescein labeling and to demonstrate that azido-GlcNAc proteins could 

be coupled to a strained-alkyne probe via SPAAC in cell lysates, a newly prepared dye, 

DBCO-naphthalimide (by Dr. Honglin Li) was used. Two conditions were tested with 

DBCO-naphthalimide: 1) incubation at room temperature for 2 h on end-over-end rotator, 

and 2) incubation at 10 ºC for 10 h on a shaker. Incubation at room temperature resulted 

in unspecific binding since the signal of the test samples was the same as that of control 

samples. The 2 h room temperature and the 10 h 10 ºC conditions have been previously 

employed in Cu catalyzed dye-labeling of GlcNAz-tagged NIH3T3 cell lysates using 

Tamra-alkyne dye, and that of azidohomoalanine-tagged Jurkat cells with Alkynyl Alexa-

647 dye, respectively, without any unspecific protein background34, 36. Although 

unspecific protein background was the challenge in this study, a difference in the signal 

between test sample and control was observed with the 10 h 10ºC incubation, indicating 
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that the azido-GlcNAc proteins that had been coupled via SPAAC to alkyne dye probe in 

cell lysate were detected. Perhaps the poor signals observed in this work justify why none 

of these three alkyne-functionalized fluorescent dyes (DBCO-fluorescin, FITC-alkyne 

and DBCO-naphthalimide) are listed among the dyes known for robust labeling of azido-

GlcNAc proteins in cell lysates.  

3.4.5 Bead Washing 

In bead-based enrichment of proteins, thorough washing of beads is crucial for removal 

of nonspecific protein background. Inability to remove these bead-adsorbed proteins can 

result in contamination of the bead-bound fraction and false positives. Owing to lack of 

washing instructions for the -Aminohexyl agarose beads, we attempted to formulate 

washing buffers and develop washing protocol based on the known wash buffers and 

protocols. Several bead-based affinity enrichment strategies have their own optimized 

washing protocols that differ from study to study. The only common thing among them is 

the repeated use of detergent- and salt-containing buffers. Detergents and salts in the 

wash buffers are good agents for solubilization of proteins and can thus cause desorption 

of non-covalently adsorbed proteins. A washing protocol or condition was evaluated by 

comparing SDS-PAGE protein profiles of the original SPAAC feed, first washes, final 

washes, DTT eluent and denatured beads. We considered a washing protocol ideal and 

efficient if proteins are observed in the first washes, and none in the final washes, DTT 

eluents as well as denatured beads. Since nonspecific binding proteins on affinity resins 

cannot be avoided, presence of protein bands from denatured beads was expected. 

However, reduction in protein bands in this fraction was preferable. 
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Figure 3.11 Evaluation of the RIPA wash buffer against an in-house bead-washing 

protocol. (A) RIPA wash buffer cleaned the beads permitting no contamination of the 

DTT eluent and no proteins remaining on the beads. (B) The complete elimination of 

proteins from denatured beads (lanes 8 and 9) was not repeatable with RIPA wash buffer 

and could not be achieved with the in-house bead-washing protocol.
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 Through recommended series of trail-and-error experiments testing and 

combining different bead washing strategies, the washing protocol illustrated on fig. 

3.12B was formulated. Some of the wash buffers and protocols tested prior to 

formulation included RIPA wash buffer21, Click-iT bead-washing protocol that uses 

SDS and 8M Urea/100 mM Tris, pH 8 wash buffers (Click-iT Enrichment Kit, 

Invitrogen) and TBST that is commonly used to remove non-specific binding proteins in 

immunoassays. TBST and Click-iT wash buffers did not work at all while RIPA wash 

buffer did clean up the beads resulting in undetectableproteins in the DTT eluent and 

denatured beads (Fig. 3.11A). The absence of non-specifically bound proteins remaining 

on beads was however not repeatable (Fig. 3.11B). Taken together, we developed a wash 

buffers comprising components from known wash buffers. Our in-house bead-washing 

procedure (Figure 3.13B) resulted in no contamination in the DTT eluent and some 

detectable proteins in the denatured bead fraction.  

We evaluated the in-house procedure against the EAH Sepharose 4B manufacturer’s 

bead-washing procedure (Protocols – Figure. 3.13B). We compared the efficiency of 

removing cell lysate proteins and BSA from the beads after a typical SPAAC protein 

coupling reaction. The resin employed in the evaluation as well as in the previous trial-

and-error bead-washing tests consisted of unmodified beads. On Figure 3.12, it was 

observed that both bead-washing protocols resulted in no detectable proteins in the DTT 

eluent, but that some proteins remained on the denatured beads. In analyses where 

proteins were not quantifiable by Coomassie blue absorbance method, an aliquot was 

mixed 1:1 with SDS loading buffer and loaded on the gel. On lane 8 of each gel, we 

observed that thick BSA bands remained on the beads after applying our in-house bead- 
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Figure 3.12 Evaluation and comparison of effectiveness of the two bead-washing 

protocols. The effectiveness is based on removal of cell lysate proteins and BSA from 

beads that have been incubated with protein sample under SPAAC conditions. “+L” 

means cell lysate added to beads; “-L” means no lysate added (negative control). DTT 

eluents and denatured beads fractions are used to show removal of proteins from beads. 
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Figure 3.13 (A) Resin strained-alkyne-based O-GlcNAc affinity enrichment was 

repeatable and resulted in faint protein bands (lanes 6 [right gel] and 4 [left gel]). (B) The 

two bead-washing protocols of choice in our study, namely; the in-house and the EAH 

Sepharose 4B manufacturer’s bead-washing protocols.
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washing protocol compared with the manufacturer’s protocol. This observation and the 

fact that the washing steps of the manufacturer’s protocol are very short motivated us to 

select the manufacturer’s protocol for subsequent enrichment experiments.  

3.4.6 Affinity Enrichment of Cellular O-GlcNAc Proteins and Label-free LC-MS/MS 

Quantification and Identification 

Following optimization of the bead washing, selectivity of the O-GlcNAc enrichment 

strategy was assessed by resolving the enriched fraction using 1D SDS-PAGE. Figure 

3.13A shows protein bands of the azido-labeled samples and not the control from DTT 

eluents. The selectivity was further assessed by comparing the label-free LC-MS/MS 

quantified intensities of the proteins from the azido-labeled (O-GlcNAz-modified) and 

the control (O-GlcNAc-modified) samples, both TGF-β1-induced and non-induced. The 

summed intensities, the enrichment factors and their logarithmic values were utilized for 

comparisons. The summed intensities were initially corrected for by removing proteins 

identified to be contaminants and had no mouse gene name associated with them. All of 

the keratin proteins seem to be listed among the proteomics contaminants in the 

UniProtKB database. However, only those with no mouse gene name associated with 

them were discarded, and the others were retained since some cytokeratins are epithelial 

markers and are relevant to cancer and EMT biology. Intensities of the discarded proteins 

were reminiscent of biochemical noise and obscured observation of the actual differences 

between the azido-labeled and control samples, as seen on Figure 3.14. In both the TGF-

β1-induced and non-induced sample the summed intensity of the azido-labeled was about 

3-fold higher than that of the control. However, the median enrichment factors were 

different, 3.2 in TGF-β1-induced and 1 in non-induced samples. Although the data  
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Figure 3.14 Summed intensities of identified proteins from raw and “contaminants-

filtered” data generated from five samples with modified or unmodified beads, with or 

without metabolic labeling in NMuMG cells induced or non-induced with TGF-β1. 
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suggests that enrichment was not consistent between the TGF-β1-induced and non-

induced samples, it is inconclusive to rate the efficiency of enrichment since the 

experiment was not repeated. Using the commercial resin-alkyne, Hahne et al. reported 

efficient enrichment showing 60-fold higher summed intensity in azido-labeled than the 

control and a median enrichment factor of 260. Although their enrichment efficiency is 

higher, the degree of modification of their resin is unknown. Hence, the click chemistry-

based affinity enrichment reported in Hahne et al. and this study cannot be compared. 

 The distribution of protein intensities as a function of log2 [EF] is complex but has 

the same sigmoidal pattern across all samples with many proteins having minimum 

intensities covering a stretch of log2 [EF] values from -5 to 5, and beyond that the 

intensities increase exponentially. For the non-induced sample majority of the proteins 

(~120) had log2 [EF] around zero showing that they were not enriched. For the induced 

sample the number of proteins with log2 [EF] around zero is still high but the number of 

proteins log2 [EF] >0 forms a normal distribution that seems to peak around log2 [EF] = 

3. Given that all the experimental conditions were the same, the data suggests that there 

might have been fewer O-GlcNAc-modified proteins in non-induced than in the induced 

sample. However, the global O-GlcNAcylation between TGF-β1-induced and non-

induced NMuMG was not determined. All the proteins with log2 [EF] around zero and 

below were discarded from further analysis since they represented non-specifically bound 

proteins. Out of about 200 proteins identified, 125 were regarded as the bead-enriched O-

GlcNAc proteome. 

 In a study on global profiling of O-GlcNAc proteome from HEK293 cells using 

the commercial resin-alkyne, Hahne et al. identified about 1500 proteins (Ref). In this  
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Figure 3.15 Global identification of potentially O-GlcNAc proteins in TGF-β1-induced 

EMT. (Upper panel) Pairs of tubes showing the samples used for determining the 

biochemical enrichment factors of the identified proteins are displayed. Red panel: 

Modified/Unmodified beads, +GalNAz, +TGF-β1; Blue panel: Modified/Unmodified 

beads, +GalNAz, -TGF-β1; Green panel: Modified beads, +/-GalNAz, -TGF-β1. (Middle 

panel) Scatter plots of intensity and log2 biochemical enrichment factors of identified 

potentially O-GlcNAc proteins. (Lower panel) Distribution of the biochemical 

enrichment factors. More proteins were enriched in the TGF-β1-induced compared to 

non-induced samples.  
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study, only about 200 proteins out of the entire O-GlcNAc proteome of NMuMG cells 

were identified. Unlike the commercial resin-alkyne, strained-alkyne resin employed in 

affinity enrichment of the O-GlcNAc proteome in this study was applied for the first 

timein proteomics. Although some parts of the enrichment procedure such as the 

conjugation of the affinity tag to the agarose-cleavable linker, as well as the bead 

washing were rigorously tested and optimized, the mass spectrometric component was 

not optimized. The proteomics results therefore represent only a once-off measurement 

that could have been preliminary and needed to be replicated for sufficient evaluation of 

the selectivity of the enrichment strategy. Typical proteomic studies using high-resolution 

orbitrap instruments generate massive data comprised of several thousands of proteins. 

Such studies often involve extensive pre-fractionation of the cells and tissue samples. In 

this study, only one subcellular fraction comprising nucleocytoplasmic proteins was 

analyzed. The number of proteins would have been increased if the nuclear and 

cytoplasmic fractions were analyzed separately. Also further fractionation to extract the 

mitochondrial fractions should have been considered since the OGT resides in the 

nucleus, cytoplasm and mitochondria where it carries out the O-GlcNAcylation of target 

proteins.  

3.4.7 Gene Ontology Analyses  

3.4.7.1 Subcellular Localization 

Of all the protein ID’s mapped by the IPA, 90% are nucleocytoplasmic proteins while 

10% are plasma membrane and extracellular proteins. Although extensive pre-

fractionation of the samples was not carried out prior to affinity enrichment, the results of  
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Figure 3.16 (A) Subcellular localization of the identified proteins. (B) Left panel: Scatter 

plot of intensity and log2-fold change of TGF-β-induced protein expression; Right panel: 

The distribution of log2 ratio (+/-TGF-β1) of the identified proteins. More proteins were 

upregulated than downregulated during TGF-β1-induced EMT in NMuMG cells. 



www.manaraa.com

 

158 
 

the GO term analysis are in agreement with the fact that the O-GlcNAc is a PTM of 

nucleocytoplasmic proteins. However, some few plasma membrane and extracellular 

proteins bearing O- and N-glycans were also enriched. This is not surprising because the 

bioorthogonal reporter used this study, namely AC4GalNAz, is likely to be incorporated 

in glycans where GalNac occurs thereby resulting in proteins with complex glycans being 

enriched in mixture with the O-GlcNAc modified proteins. Nevertheless, efforts to 

minimize azido-labeling of O- and N-glycans were undertaken as suggested and done in 

other studies. Such efforts were successfully implemented since our data consists mostly 

of nucleocytoplasmic proteins. 

3.4.7.2.Canonical Pathways 

The results of the GO analyses show that the highly represented and/or enriched 

biological functions and diseases and well as pathways and networks in our data support 

breast cancer and cancer metastasis. Figure 3.17 (Left panel) is a bar chart showing 

canonical metabolic pathways that are significantly enriched in the experimental data. 

Out of the 16 metabolic pathways that were significantly enriched, the first two, 

Glycolysis I and Gluconeogenesis I, corresponding to glucose metabolism, are enriched 

3-4 fold higher than the others. This corroborates proteomic findings in other studies and 

supports the fact about elevation of glucose metabolism in cancer cells. Majority of the 

metabolic pathways had 30% representative proteins (ratio=0.3) in the experimental data. 

Figure 3.17 (Right panel) is a bar chart showing canonical signaling pathways that are 

significantly enriched in the experimental data. A total of 68 signaling pathways were 

significantly enriched in our data set. Of the first 6 highly enriched pathways, 3 have 

been implicated in proteomic studies pertaining to TGF-β1-induced EMT. These are  
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Figure 3.17 Cellular metabolic (left panel) and signaling (right panel) pathways 

responding to TGF-β1 induction in NMuMG cells. The y-axis represents the pathways 

identified. The x-axis (upper) represents significance of each pathway based upon the p-

values determined using Right-tailed Fisher’s exact test with threshold less that 0.05 (p < 

0.05). The ratio of the number of proteins in a given pathway satisfying the cutoff to the 

total number of proteins present in that pathway was determined. In addition, each 

pathway’s activity pattern represented by a Z-score showing decrease on increase in the 

overall activity as contributed by individual proteins in the pathway has been displayed as 

colored bars. Only a few signaling pathways had their activity patterns available.
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Remodeling of Epithelial Adherens Junctions, Actin Cytoskeleton signaling and Protein 

Ubiquitination pathway. Different to metabolic pathways, majority of the signaling 

pathways have only about 5%representation in the experimental data, but similar to 

metabolic pathways, many signaling pathways show no pattern of prediction direction. 

3.4.7.3 Biological Functions and Networks  

The biological functions that were most significant to the enriched networks were 

determined and using the Fisher’s exact test, the probability that each biological function 

assigned to a network was due to chance alone was calculated. Table 3.2 shows that the 

top interacting networks of TGF-β1-responsive gene products were significantly enriched 

for molecular and cellular functions of cancer metastasis, cell cycle, cellular movement 

and carbohydrate metabolism, among others. Examination of the visualized network 

reveals the observed functions. The upstream regulators in this network are genes for β-

Catenin, Cyclin D1, Caveolin 1, and Receptor tyrosine-protein kinase erbB-2 (also 

known as human epidermal growth factor receptor 2). These regulators either singly or 

associatively modulate activity of several genes relevant to EMT and cancer metastasis in 

response to TGF-β1. 

 β-Catenin interacts with E-cadherin in the adherens junctions and both are down-

regulated during TGF-β1 treatment. In the experimental data such interactions resulted in 

upregulation of ACTB, BTF3, CD44 and PSAP among the O-GlcNAc-modified proteins. 

Simultaneousy the scaffolding protein Caveolin 1 indirectly modulates several keratins, 

HSPA8 and Cyclin D1. All, but Cyclin D1 were upregulated in the experiment. The only 

upstream regulator of E-cadherin in this network is Protein Kinase AMP-Activated,  
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Figure 3.18 (A) Ingenuity Pathway Analysis was used to extract and display nodes 

overlaid with expression levels for proteins belonging to the top regulatory network 

enriched in the experimental data. This network is involved in metastasis. The 

upregulated proteins are displayed in red while the down-regulated proteins are in green. 

The colorless nodes represent proteins extracted in silico. The scale bar shows the range 

of fold changes. (B) Additional proteins SNAIL, TGF-β1 and OGT were included and 

their relationships with the proteins in the network are displayed. 
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alpha 2 (PRKAA2), a molecule that also indirectly upregulated Vimentin and down-

regulated YBX1. Three extra genes, SNAI1, OGT and TGF-β1 were added to the 

network occurring in breast cancer cell lines to see if they might interact with the existing 

genes. These three regulators barely interact with any of the genes expressed in the 

dataset. However, SNAI1 regulates several genes in the network including E-cadherin 

gene. The down-regulated YBX1 acts upstream of SNAI1 and TGF-β1. The regulatory 

activity of TGF-β1 in this network is limited to modulation of ECM protein MMP9 while 

that of OGT includes interaction with Cyclin D1 and modulation of β-Catenin. The 

network does not show any crosstalk between regulatory activities of OGT and TGF-β1. 

However, there may be co-regulation on MMP9 originating from SNAI1 and TGF-β1. 

3.4.8 Relevance of the Proteomics Data to EMT  

In the post-genomic era proteome-wide genome-scale studies report gene expression 

maps for understanding mechanisms underlying biological functions and disease 

processes, the same way large-scale transcriptional analyses do. However, there are only 

a few proteomic studies of EMT compared to genomic and transcriptomic studies. In 

such proteomic analyses, tumor tissues undergoing EMT have been probed using tandem 

mass spectrometry techniques to identify differentially expressed and hence EMT-

regulated proteins. In silico analyses of the protein-protein networks of these signatures 

have enabled establishment of the roles of proteins involved in EMT and metastasis, thus 

shedding new insights to the understanding of EMT. Biarc and co-workers have provided 

comprehensive EMT signatures obtained from proteomic profiling of MCF-10A cells 

following induction of EMT by two different signals, mutant K-Rasv12 and TGF-8. Gene 

Ontology classification of these signatures pointed to enhancement of cellular processes 
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and functions that support cancer progression. Among the functional classes of proteins 

differentially expressed were EMT inducers, ECM proteins, adhesion proteins, 

cytoskeletal proteins, degradation machinery, translation machinery and glucose 

metabolic machinery. The revelation of increase in glucose metabolism during EMT 

raises a question about the influence of such metabolic changes to O-GlcNAcylation of 

nucleocytoplasmic proteins, a possible alternate route for upregulation of EMT regulators 

such as transcription factors through changing their localization and stability due to the 

O-GlcNAc PTM. To this end no large-scale O-GlcNAc proteomic studies have been 

reported on TGF-β1-induced EMT.  

 In this study we hypothesized that focusing functional proteomics to O-GlcNAc 

signatures would provide insights into the crosstalk between TGF-β1-induced EMT and 

O-GlcNAcylation, since both processes cause repression of E-cadherin leading to 

invasion and metastasis. The O-GlcNAc signatures reported herein are only putative 

since their O-GlcNAc modification sites were not mapped. The label-free quantification 

was not replicated hence the level of confidence of differential expression as a result of 

TGF-β1 induction could not be statistically determined. Moreover, the identification and 

the O-GlcNAc PTM of the proteins were not validated by western blotting as well as 

ETD-MS/MS for O-GlcNAc site-mapping. As a result, the novel analytical method is not 

sufficiently comprehensive. However, despite these shortcomings, the proteomic results 

obtained using the strained-alkyne terminated bead probe underscore several published 

EMT and O-GlcNAc reports (Figure 3.19). As described in detail below, our potential O-

GlcNAc signature consists of functional classes of proteins shown in previous studies to 

support EMT and metastatic phenotypes. Figure 3.19A shows that 75% of the identified  
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Figure 3.19 (A) 75% of the potentially O-GlcNAc proteins in a TGF-induced EMT have 

been previously identified in other related signatures2, 8, 44-45. EMT_1 (EMT signatures); 

EMT_2 (EMT-associated signature). (B) Out of 121, 100 proteins have been previously 

identified in putative O-GlcNAc enrichment samples23, 36, 46-47. Some of these proteins 

have O-GlcNAc sites mapped while others have been isolated by anti-O-GlcNAc 

immunoprecipitation21, 23, 46. 18 proteins do not appear in any of the O-GlcNAc literature.
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proteome appears in EMT and metastatic signatures presented in other studies. However, 

unlike previous studies that demonstrated a set of proteomic EMT signature, our study 

shows only a subset that is potentially O-GlcNAcylated. 

 EMT is regulated at different levels of gene expression: transcriptionally and 

epigenetically, post-transcriptionally by non-coding RNAs and alternative splicing, 

translationally as well as post-translationally48. Our data contains some evidence of EMT 

regulation. The heterogenous nuclear ribonucleoproteins HNRNPA2B1, HNRNPC and 

HNRNPK were upregulated. This family of proteins is RNA-binding and is involved in 

the regulation of EMT-specific differential splicing48. An mRNA-binding protein, 

transcription factor, YB1 was downregulated. This protein controls translation of EMT-

associated transcription factors SNAIL and ZEB family members48. Its overexpression in 

breast cancer is known to induce EMT. Its downregulation in our data suggests that 

translation of EMT-associated transcription factors might have been controlled by other 

factors. However, the in silico analysis shows that YB1 is upstream of SNAIL1 

suggesting that at the time when the cells were harvested, i.e. towards completion of 

EMT in NMuMG cells, YB1 was no longer in control and was downregulated. 

 Successful EMT relies on the ability of the EMT-associated transcription factors 

to trigger cellular reprogramming49. Transcriptional regulation of EMT centers around 

the activities of the nuclear factors SNAIL, ZEB and TWIST families, which interact 

with several proteins in highly regulated networks to accomplish EMT50. None of these 

nuclear factors were observed in our data. Epigenetically, the activity of the EMT-

associated transcription factors is known to be enhanced by their close interaction with 

chromatin modifiers such histone deacetylases48. Although no epigenetic modifiers were 
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upregulated in our data, several histones, including histone H3 were upregulated 

suggesting that they could be products of deacetylation associated with regulation of 

EMT. One chromatin modifier HMGB1 was downregulated probably because by the end 

of EMT it was no longer expressed and hence was downregulated. 

 Despite being tightly regulated, the EMT program involves many cellular changes 

that include loss of E-cadherin-mediated intercellular adhesion, loss of apical-basal 

polarity and concomitant acquisition of migratory behavior, as well as reorganization of 

the actin cytoskeleton51. Similar to other proteomic studies2, 8, our data support EMT-

associated changes. Among the canonical pathways, remodeling of epithelial adherens 

junctions and actin cytoskeleton signaling were over-represented. Some cytoskeletal 

proteins of the intermediate filaments, keratins (KRT8/18/19) and vimentin were 

upregulated. Keratins 8/18 pair, and vimentin are well characterized EMT markers52 that 

are also O-GlcNAc proteins23, 46. Vimentin, in particular, is often ubiquitously isolated 

from EMT and metastasis samples of many cancers2, 45. Actin microfilament associated 

proteins, profilin-1, cofilin-1 and vinculin were upregulated. Microtubule-associated 

proteins, annexin A8 and microtubule-associated protein R/B 1 were also upregulated  

 EMT is associated with elevated levels of translation8. In eukaryotic cells, 

translation machinery occurs as translasome, the supercomplex structures within eIF3 

interactome53. These structures contain proteins involved in translation initiation, 

translation elongation, ribosome biogenesis, quality control and transport, all linked 

together to facilitate efficient protein synthesis. In this study, representative proteins 

indicative of these processes were identified. Although no translation initiation factors 

were obtained, the translation elongation factors EEF1D and EEF2 were upregulated. 
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EEF2 has previously been associated with breast cancer metastasis45. For ribosome 

biogenesis, ADP-ribosylation factor 5, a GTP-binding protein that is involved in protein 

trafficking was upregulated. Ribosomal protein SA required for assembly and stability of 

40S ribosomal subunit was upregulated.  For quality control and transport, Importin-β, a 

nuclear transporter was upregulated. Several components of the degradation machinery 

were observed in our data and the proteasomal ubiquitination canonical pathway was 

significantly overrepresented. Different Chaperonin-containing TCP1 subunits (CCT7 

experimentally and CCT3/4/5/6/8 in silico), as well as heat shock proteins 90 kDA 

(HSP90 AA1/AB1/B1), 70 kDA (HSPA 4//5/8/9) and 60 kDA (HSPD1) were 

upregulated. HSP90B1 has been previously associated with breast cancer metastasis54. 

Together with other heat shock proteins, calreticulin, an ER resident protein and calcium-

binding chaperone, was highly upregulated. The unfolded protein response, a canonical 

pathway for cellular adaptation to ER stress was highly overrepresented in our data. The 

cellular defense response to oxidative stress was also overrepresented since members of 

the NRF2-mediated oxidative stress response pathway such as the Glutathione S-

transferase proteins were upregulated. Only 1of the 5 proteasomal subunits was 

upregulated. Our data suggests that TGF-β induction might be inhibitory to expression of 

the proteasomal proteins. 

 Due to a plethora of molecular changes, cells undergoing EMT have higher 

energy requirements, especially for protein synthesis and general anabolism8. Both 

glycolysis and gluconeogenesis I were among significantly enriched canonical pathways. 

32% of Glycolytic enzymes were observed while 3% of the gluconeogenetic enzymes 

were obtained. All these proteins were upregulated by TGF-β induction. Interestingly the 
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Glycolysis pathway enzymes observed among the O-GlcNAc proteome include the series 

of enzymes from triose phosphate isomerase down to pyruvate kinase. Glycolysis 

provides both energy and metabolic intermediates while Gluconeogenesis recycles non-

sugar intermediary carbon sources back to glucose for feeding into glycolysis55. Malate 

dehydrogenase was upregulated in our data and it is known for producing NADPH for 

fatty-acid synthesis8. The fatty-acid binding protein 5 was upregulated too. 

 Still on carbohydrate metabolism, CD44 a hydrolytic enzyme for hyaluronic acid 

(HA) and a membrane receptor for HA and ECM proteins was upregulated. CD44 

appears here as part of the metastatic regulatory network that was overrepresented in the 

experimental data. CD44 is a glycoprotein with N-linked and O-linked complex glycans. 

However, since the O-GlcNAc PTMs of proteins in the data have not been validated by 

site-mapping, it is difficult to tell whether CD44 falsely appears in the O-GlcNAc 

proteome or that CD44 has an unknown O-GlcNAc site. However, presence of CD44 in 

the data is in line with a study showing that cells that have undergone EMT have stem-

like properties and TGF-β1 induction is known to promote stemness56-57. CD44 is a 

marker for stemness and the expression pattern of CD44high/CD24low is characteristic of 

cells with stem-like properties.  

3.4.8 Does the O-GlcNAc EMT Signature Reflect any Role of the O-GlcNAc PTM? 

O-GlcNAcylation has previously been found to promote breast cancer progression9. OGT 

silencing and OGA pharmacological inhibition studies have shown that O-GlcNAcylation 

alters migration and metastasis via downregulation of E-cadherin. Moreover O-

GlcNAcylation of β-Catenin and p120, the binding partners of E-cadherin, was thought to 



www.manaraa.com

 

169 
 

play a role in cell surface localization as well as binding to E-cadherin in adherens 

junctions. Those studies, however, did not provide sufficient information on the 

molecular mechanisms behind the changes in migration and metastasis. In the current 

study, the in silico analysis of the potentially O-GlcNAc proteome of the TGF-β1-

induced EMT implicates enrichment of EMT and metastasis-associated regulatory 

network, the core of which features two transcription factors that are regulated by OGT, 

namely; β-Catenin and Cyclin D1. This network strengthens our hypothesis that there 

may be cooperation between TGF-β signaling and O-GlcNAcylation in promoting cancer 

growth, EMT, migration and metastasis. Perhaps the hyperglycaemic conditions 

associated with SNAIL O-GlcNAcylation in Park et al.10 would enhance such 

cooperation by elevating the levels of UDP-GlcNAc. In order to test the hypothesis, 

further studies are necessary to validate identification of some key proteins as well as 

their O-GlcNAc PTM, and to ensure that they are differentially expressed in the context 

of TGF-β1-induced EMT. 

3.5 CONCLUSIONS 

By coupling DBCO-SS-NHS ester to NH2-terminated beaded resin, a cleavable azide-

reactive dibenzocyclooctyne-disulphide resin was developed for the affinity enrichment 

of O-GlcNAc modified proteins. UV-Vis measurements proved that the new affinity resin 

had the similar loading capacity as the original resin, and MALDI-TOF measurements 

showed that the resin is azide-reactive. Successful metabolic labeling of NIH3T3 and 

NMuMG cells was detected by fluorescence microscopy and SDS-PAGE in combination 

with in-gel fluorescence scanning. FITC-alkyne, DBCO-fluorescein, DBCO-

naphthalimide and 3-azido-7-hydroxycoumarin were used as fluorescent probes. Despite 
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of the strong signals in fluorescence microscopy, the in-gel fluorescence signals were 

fairly weak and seemed to be impeded by abundant nonspecific binding proteins. 

Successful affinity enrichment of GalNAz-labeled proteins from protein extracts 

provided confidence to apply the affinity enrichment strategy to NMuMG cells 

undergoing EMT. 

 Examination of the O-GlcNAc proteome of TGF-β1-induced EMT revealed some 

insights that underscore findings in other cancer proteomics and O-GlcNAc studies. 

Representative functional proteins were detected, and among them were enzymes of the 

glycolysis pathway as well as EMT and metastasis markers such as vimentin. Gene 

ontology analyses showed that majority of the proteins are nucleocytoplasmic and that, 

the highly overrepresented pathways included glycolysis and many TGF-β non-canonical 

pathways. NMuMG cells undergoing EMT resemble tumor progression stage in which 

carcinoma in situ cells acquire mesenchymal characteristics and migrate to invade the 

surrounding stroma. Upregulation of glycolysis is a characteristic of cancer, which due to 

“Warburg effect” leads to upregulation of hexose biosynthetic pathway and increase in 

UDP-GlcNAc, with the result that many nucleocytoplasmic proteins are aberrantly O-

GlcNAcylated11, 20, 58. The stability and nuclear localization of some transcription EMT 

inducers such as Snail1 is regulated in this way10. Snail and other transcription factors 

were not obtained in this study. However, in silico protein-protein interactions revealed a 

metastatic regulatory network featuring genes that are regulated by Snail1 such as E-

cadherin and MMP-9. Previous Cell biology studies in which GlcNAcylation correlated 

positively with metastasis and negatively with E-cadherin expression implicated 

influence of GlcNAcylation on interactions of proteins E-cadherin, β-Catenin and p120 
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(Catenin delta-1), where E-cadherin level decreased probably due to GlcNAcylation of β-

Catenin and p1209. These studies did not investigate any cancer-associated signaling 

processes. Neither did they identify GlcNAc site on adhesion proteins nor its role in 

modulating E-cadherin. The β-Catenin regulated network generated in silico in this study 

leads us to hypothesize that TGF-β signaling would cooperate with GlcNAcylation 

during cancer progression to promote metastasis initiated via EMT. Future studies should 

aim at validating protein identification and mapping the O-GlcNAc sites on identified 

proteins to establish the role of site-specific GlcNAcylation.  

Future research can also be conducted to improve the SPAAC “click chemistry”-based 

affinity enrichment strategy. Selectivity and specificity of the bead probe could be better 

ascertained by doing investigations with synthetic GalNAz-labeled proteins, instead of 

unlabeled proteins. In addition, extensive but focused sample pre-fractionation for 

enrichment of nuclear fraction would be ideal for identification of O-GlcNAc-modified 

transcription factors.
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APPENDIX A 

PROTEIN IDENTIFICATION AND LABEL-FREE QUANTIFICATION DATA  
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Table A.1 SPAAC enriched O-GlcNAc putative IPA-identified proteins 

 

Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

P68134 Acta1 21.51 14.87 81.17 

P60710 Actg1 25.00 22.60 5.28 

A1BN54 Actn1 22.85 14.87 205.88 

P57780 Actn4 20.61 14.87 43.54 

P45376 Akr1b1 18.63 14.87 10.99 

P10518 Alad 14.87 17.75 -7.32 

P84084 Arf5 14.87 17.39 -5.71 

Q99PT1 Arhgdia 21.71 14.87 93.24 

Q64152-2 Btf3 19.22 14.87 16.61 

P14211 Calr 22.48 14.87 159.34 

B1ARS0 Cap1 18.52 14.87 10.20 

D3YW48 Capns1 14.87 14.87 -1.23 

P80314 Cct2 14.87 15.40 -1.44 

P80313 Cct7 18.39 14.87 9.32 

Q3U8S1 Cd44 21.22 14.87 66.47 

P60766 Cdc42 19.24 14.87 16.79 

P18760 Cfl1 22.49 21.96 1.45 

Q80WV3 Chst2 18.71 14.87 11.64 

D3Z036 Cops3 15.16 14.87 -1.01 

F6QD74 Cyfip1 14.87 20.13 -38.34 

D3Z7N2 Eef1d 18.93 14.87 13.61 
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Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

Q9D8N0 Eef1g 22.36 14.87 146.58 

P58252 Eef2 16.96 14.87 3.45 

P17182 Eno1 24.36 24.28 1.05 

Q05816 Fabp5 19.05 21.22 0.22 

Q920E5 Fdps 17.16 14.87 3.98 

B7FAV1 Flna 22.02 14.87 115.29 

Q80X90 Flnb 21.91 14.87 106.84 

S4R257 Gapdh 22.45 20.02 5.39 

E9PZF0 Gm20390 20.75 14.87 47.87 

O09131 Gsto1 20.74 14.87 47.44 

P19157 Gstp1 19.12 14.87 15.46 

P63158 Hmgb1 14.87 21.48 -97.78 

O88569-3 Hnrnpa2b1 18.65 14.87 11.16 

Q9Z204-4 Hnrnpc 19.38 14.87 18.55 

H3BLP7 Hnrnpk 18.38 14.87 9.29 

P07901 Hsp90aa1 21.56 14.87 83.87 

P11499 Hsp90ab1 23.54 20.29 9.49 

Q3U2G2 Hspa4 18.17 14.87 8.01 

P20029 Hspa5 23.44 21.58 3.64 

P63017 Hspa8 24.59 19.75 28.78 

P63038 Hspd1 21.25 14.87 67.88 

P70168 Kpnb1 17.31 14.87 4.43 

P05784 Krt18 24.90 21.00 14.91 

P19001 Krt19 22.11 14.87 122.72 
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Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

P11679 Krt8 25.34 20.82 22.88 

D3Z736 Ldha 21.65 14.87 89.58 

P48678-3 Lmna 20.71 14.87 46.72 

Q61166 Mapre1 17.35 14.87 4.53 

P08249 Mdh2 22.39 14.87 149.53 

P26041 Msn 21.59 20.03 2.96 

K3W4R2 Myh14 15.52 14.87 1.28 

Q60817 Naca 20.35 22.07 -3.30 

P09405 Ncl 21.37 19.77 3.03 

Q5NC80 Nme1 14.87 14.87 -1.23 

Q3TQX1 Orc6 19.25 14.87 16.99 

P09103 P4hb 23.11 20.24 7.32 

P27773 Pdia3 22.27 14.87 137.20 

P70296 Pebp1 14.87 20.20 -40.17 

Q11136 Pepd 18.76 14.87 12.02 

P62962 Pfn1 22.82 22.17 1.57 

Q9DBJ1 Pgam1 22.99 14.87 226.06 

P09411 Pgk1 21.33 14.87 71.83 

P52480 Pkm 23.25 14.87 271.79 

B1AXW5 Prdx1 20.21 21.13 -1.89 

D3Z4A4 Prdx2 20.04 19.21 1.79 

E9PZ00 Psap 19.65 14.87 22.40 

P49722 Psma2 14.87 20.76 -59.02 

Q9Z2U0 Psma7 18.95 20.39 -2.71 
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Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

Q9R1P1 Psmb3 19.51 20.60 -2.13 

P99026 Psmb4 19.86 21.27 -2.67 

P26516 Psmd7 18.55 14.87 10.46 

Q5SW87 Rab1A 17.47 14.87 4.93 

P54728 Rad23b 14.87 20.15 -38.90 

P14206 Rpsa 20.54 14.87 41.38 

P07091 S100a4 14.87 19.31 -21.66 

Q62266 Sprr1a 14.87 14.87 -1.23 

Q93092 Taldo1 14.87 17.43 -5.89 

P26039 Tln1 17.51 14.87 5.07 

H7BXC3 Tpi1 20.59 14.87 42.91 

E9Q450 Tpm1 20.56 14.87 42.05 

D3Z2H9 Tpm3 23.54 20.90 6.28 

Q6IRU2 Tpm4 23.18 20.82 5.13 

P10639 Txn 14.87 21.86 -127.12 

Q64727 Vcl 21.06 14.87 59.35 

Q01853 Vcp 19.01 14.87 14.38 

P20152 Vim 24.56 20.20 20.53 

A2BGG7 Ybx1 14.87 18.84 -15.69 

P62259 Ywhae 23.30 14.87 281.49 

P61982 Ywhag 18.31 14.87 8.81 

F6YY69 Ywhaq 19.80 14.87 24.82 
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Table A.2 SPAAC enriched O-GlcNAc putative proteins not identified and not used in 

IPA 

 

Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

A0A087WP98 Ptma 14.87 19.95 -33.66 

B1AX58 Pls3 19.72 14.87 23.45 

B1AYJ9 Ola1 16.98 14.87 3.52 

Q9D312 Krt20 18.15 14.87 7.88 

D3Z5N9 Snrpd2 14.87 18.16 -9.79 

D6RHT5 Ddx39a 18.68 14.87 11.41 

E0CZ27 Hist1h3a 22.26 20.33 3.80 

F8WIX8 Hist1h2aa 25.10 23.62 2.78 

G3UY49 Calu 16.81 14.87 3.13 

Q921D0 Anxa8 19.99 14.87 28.23 

P68373 Tuba1c 21.27 14.87 68.82 

P08003 Pdia4 18.45 14.87 9.71 

P08113 Hsp90b1 20.50 14.87 40.28 

Q8CBB6 Hist1h2ba 14.87 15.94 -2.10 

Q6ZWY9 Hist1h2bc 15.38 14.87 1.16 

Q7TPM0 Cbx1 17.89 14.87 6.60 

P24622-2 Cryaa 14.87 16.87 -4.01 

P38647 Hspa9 19.51 14.87 20.31 

P43275 Hist1h1a 19.65 20.98 -2.50 

P43276 Hist1h1b 20.78 22.30 -2.87 

P50543 S100a11 17.90 14.87 6.63 
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Protein IDs Gene names Log2(Int-Ind.) Log2(Int-Non-ind) Fold Change 

P60335 Pcbp1 14.87 14.87 -1.23 

P62204 Calm1 21.00 21.69 0.62 

P62806 Hist1h4a 24.06 14.87 476.30 

Q14AA6 Ran 18.50 14.87 10.07 

P63028 Tpt1 19.09 14.87 15.18 

P99024 Tubb5 20.58 14.87 42.59 

Q3TML0 Pdia6 14.87 16.96 -4.26 

Q3U1J4 Ddb1 14.87 14.87 -1.23 

Q8C9B9 Dido1 14.87 14.87 -1.23 

Q9CPU0 Glo1 18.70 20.27 -2.99 

Q9CQI6 Cotl1 18.37 19.76 -2.62 

Q9D305 Thap2 20.40 14.87 37.62 

Q9JMG7 Hdgfrp3 17.11 14.87 3.84 
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Table A.3 Biological functions overrepresented in high confidence in O-GlcNAc proteins 

 

Categories Biofunctions p-value Molecules 

Cancer, organismal 

injury and 

abnormalities 

Metastasis 7.09E-03 PRDX2, PSAP, 

S100A4, TLN1 

Carbohydrate 

metabolism, drug 

metabolism, small 

molecule biochemistry 

Catabolism of hyaluronic 

acid 

9.30E-03 CD44 

Carbohydrate 

metabolism, drug 

metabolism, small 

molecule biochemistry 

Internalization of 

hyaluronic acid 

9.30E-03 CD44 

Embryonic 

development, tissue 

development 

Branching 

morphogenesis of 

mammary organoid 

1.85E-02 HSP90AB1 

Cellular development, 

cellular growth and 

proliferation 

Proliferation of 

melanoma cell lines 

1.85E-02 PRDX2 

Cancer, organismal 

injury and 

abnormalities 

Metastatic potential of 

breast cancer cell lines 

2.76E-02 PSAP 
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